Towards the contention aware scheduling in HPC cluster
environment

Sergey Blagodurov
Systems Research Lab
Simon Fraser University

sergey_blagodurov@sfu.ca

ABSTRACT

Contention for shared resources in High-Performance Computing
(HPC) clusters occurs when jobs are concurrently executing on
the same multicore node (there is a contention for allocated CPU
time, shared caches, memory bus, memory controllers, etc.) and
when jobs are concurrently accessing cluster interconnects as their
processes communicate data between each other. The cluster net-
work also has to be used by the cluster scheduler in a virtual-
ized environment to migrate job virtual machines across the nodes.
The contention for cluster shared resources incurs severe degrada-
tion to workload performance and stability and hence must be ad-
dressed. The state-of-the-art HPC cluster schedulers, however, are
not contention-aware. The goal of this work is the design, imple-
mentation and evaluation of an HPC scheduling framework that is
contention aware.

1. INTRODUCTION

An HPC cluster is a group of linked computers, working to-
gether closely thus in many respects forming a single computer for
the purpose of solving advanced computation problems. The com-
puters (nodes) in the HPC cluster are connected through a cluster
network and are treated by a cluster resource management system
as a whole. HPC cluster is a batch processing system: it executes
jobs at a time chosen by the cluster scheduler according to the re-
quirements set upon job submission, defined scheduling policy and
the availability of resources.

A job is submitted to the HPC cluster with a script that contains
a program invocation and a set of attributes allowing cluster user
to manage the job after submission and to request the resources
necessary for the job execution. The attributes specify the duration
of the job (walltime), offer control over when a job is eligible to be
run, what happens to the output when it is completed and how the
user is notified when it completes.

The system puts the job in a queue upon submission. The queue
contains the jobs waiting for the execution on the cluster. Once the
resources specified in the job submission script are available, and if
the job is eligible to run according to the cluster scheduling policy,
the system starts the job and executes it for the duration specified

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Alexandra Fedorova

Systems Research Lab

Simon Fraser University
alexandra_fedorova@sfu.ca

in the submission script.

In the process of its execution, the job uses the cluster resources
assigned to it. In doing so, it can compete for those resources that
are shared between several concurrently executing jobs. The par-
allel streams of execution within the same job can also compete
among each other. In this work, we consider the following bottle-
necks which result in performance degradation when highly con-
tended:

o Shared resource contention between the job processes in the
memory hierarchy of each cluster node. We assume all nodes
to be multicore servers. In a multicore server (Figure 1),
cores share parts of the memory hierarchy, which we term
memory domains. When the job processes (ranks) execute
on these cores, they compete for resources such as last-level

caches (LLC), system request queues and memory controllers [14,

22,13, 11].

e |6 S
L

Domain 1

=
e EEEH

Domain 3 Domain 4

Domain 2

Figure 1: A schematic view of a cluster node with four memory
domains and four cores per domain. There are 16 cores in total,
and a shared L3 cache per domain.

e Contention and overhead of accessing cluster interconnects
(cluster network). It can occur when (a) several processes
of the same job spread among cluster nodes would want to
communicate their data between each other'; (b) the cluster

!Cluster jobs are usually created using MPI, a Message Passing In-
terface, or other APIs that would allow their processes to explicitly,
without reliance on cache coherence exchange the data between
each other, even if the processes are running on different machines.

interconnect is used to migrate job virtual machines (VMs)
across the nodes in a virtualized cluster environment.

The contention for shared resources results in the increased ex-
ecution time for the contention-sensitive job. The probability of
such increase is high, as HPC clusters are often used by many users
and each of them in general does not know which jobs will be ex-
ecuted concurrently on the cluster at a given time. Due to these
reasons, wallclock estimations have been historically poor, deviat-
ing approximately 20 to 40% from the factual value across a wide
spectrum of systems [18].

If the job needs more time to execute than is specified in the
script, the scheduler might try to allocate additional resources to
the job. It might not be able to do so, as different jobs might be
already scheduled for execution immediately after. If that happens,
scheduler can terminate the job before its natural completion. That
is why it is essential to avoid the increase in execution time due to
shared resource contention within the HPC cluster when possible.”

The existing systems allow users to post certain coarse-grained
resource demands in the submission script: the job can request a
number of cluster nodes, processors, the amount of physical mem-
ory, the swap or the disk space. They, however, do not allow to
provide fine grained description of resource requirements of the job
(i.e. how sensitive the application is to the memory resource con-
tention or to the internode exchange of the data). Because of that,
the application may encounter shortage of actual computational re-
sources allocated to it (e.g. cache space, memory controller band-
width or internode interconnect bandwidth), even though the re-
source requirements specified during the job submission (the num-
ber of nodes, cores per node, memory and so on) are perfectly met.

The goal of this work is the design, implementation and evalua-
tion of an HPC scheduling framework that is contention aware.

The rest of this paper is organized as follows: Section 2 describes
the cluster framework assumed in this study and our experimen-
tal setup. Section 3 provides the summary of contributions made
within the project so far. Section 4 presents experimental results.
Section 5 concludes the paper with the discussion of possible ways
the developed framework can be used and the description of our
future steps.

2. SYSTEM OVERVIEW

Figure 2 describes an HPC cluster assumed within this study and
a job management cycle in it. If there are job submission requests
posted in the last scheduling interval, the framework goes through
steps 1-10. Otherwise, only steps 3—10 are being executed. For
the most part, the management cycle is self-explanatory. We will
clarify the remaining parts below. One thing we would like to high-
light at that point is that there is a two level scheduling present in
a typical HPC cluster: (a) a cluster-wide scheduling on the head
node (step 3) and (b) the OS-wide scheduling performed within

*To prevent a premature job termination, the user can increase the
walltime in the submission script. That, however, can result in early
completion, in case the contention does not appear in that run. The
scheduler will try to use the freed resources to run other jobs, but
none might be eligible to run at that time, so, in general, the cluster
user will be charged for the time specified in the submission script.
The issue of charging rates (the amount users pay for compute re-
sources) might feel irrelevant to some academic facilities, but is im-
portant to the industry level HPC clusters. To support it, Maui and
Moab schedulers have a built-in ability to charge users with rates
based on QoS, resources, and time of day [17]. While using HPC
clusters for academic research purposes is typically free of charge,
it can be limited to certain yearly allocation quotas, measured in
core years [2].

each compute node (step 5). The first level decides what job pro-
cesses to put on what nodes in a cluster, the second level then deals
with scheduling of job processes assigned to a given node within
that node. The first level scheduling is done by the job scheduler,
the second level is usually done by the OS kernel running on the
node .

In this section we will describe the state-of-the-art tools that are
used in such HPC system. We will then suggest the modifications
that need to be done for the HPC framework to be contention-aware
in Section 3.

2.1 Experimental Platform

We use the following facilities in our work.

1. Dell_Opteron: a small testing 48-core cluster. The nodes
have the following hardware configuration:

Dell-Poweredge-R805 (AMD Opteron 2435 Istanbul) servers have
twelve cores placed on two chips. Each chip has a 6MB cache
shared by its six cores. It is a NUMA system: each CPU has an as-
sociated 16 GB memory block, for a total of 32 GB main memory.
Each server had a single 70 GB SCSI hard drive.

Dell-Poweredge-R905 (AMD Opteron 8435 Istanbul) has 24 cores
placed on four chips. Each chip has a 5 MB L3 cache shared by its
six cores. Each core also has a private unified L2 cache and private
L1 instruction and data caches. It is a NUMA system: each CPU
has an associated 4 GB memory block, for a total of 16 GB main
memory. The server was configured with a single 76 GB SCSI hard
drive.

The nodes are connected through 100MbE and 1GbE networks.
The nodes were configured with Linux Gentoo 2.6.32 release 9.

2. HP_Nehalem: a testing 96-core (192-HT-context) cluster.
The nodes have the following hardware configuration:

HP ProLiant SL.390 (Intel Xeon X5650 Nehalem) servers have
12 cores placed on two chips (24 thread contexts if HyperThreading
is enabled). Each chip has a 12 MB L3 cache shared by its six
cores. Each core also has a private unified L2 cache and private
L1 instruction and data caches. It is a NUMA system: each CPU
has an associated 24 GB memory block, for a total of 48 GB main
memory. The servers were configured with two 2 TB SCSI hard
drives.

We enabled HyperThreading on these machines since some HPC
workloads can benefit from it [1].

The nodes are connected through 1GbE and 10GbE networks.
The nodes were configured with Scientific Linux 2.6.32 release 9.

3. IBM_Nehalem (india): a 1024-core cluster hosted by Fu-
tureGrid. The nodes have the following hardware configuration:

IBM iDataPlex (Intel Xeon X5570 Nehalem) servers have 8 cores
placed on two chips. Each chip has an 8 MB L3 cache shared by
its four cores. Each core also has a private unified L2 cache and
private L1 instruction and data caches. It is a NUMA system: each
CPU has an associated 12 GB memory block, for a total of 24 GB
main memory. The servers were configured with a single SCSI hard
drive.

The nodes are connected through 1GbE and InfiniBand networks.
The nodes were configured with Scientific Linux 2.6.32 release 9.

We use OpenIPMI to measure power consumption of the com-
pute nodes and Integrated Lights-Out (iLO 3) feature of the Proliant
servers in HP_Nehalem to turn nodes on/off. iLO is an embed-
ded server management technology that makes it possible to moni-
tor and perform activities on an HP server from a remote location.
The iLO Ethernet card has a separate network connection (and its
own [P address) to which the framework periodically connects via
HTTPS and issues the power up/ power down requests.

We use SPEC MPI2007 as our workload. MPI2007 is SPEC’s

Clients (tablet, laptop,
desktop, etc)

1). User connects
to the HPC cluster
via client and

submits a job with
a PBS script.

Head node
RM, JS

(Ethernet, InfiniBand)

Comput des
libraries (OpenMPI, etc)
RM daemons (pbs_mom)

Cluster network

Monitoring (JS GUI),

control (IPMI, iLO3, etc) nodesioffiojsave power:

7). Users or sysadmins analyze the resource usage report.

8). Users can checkpoint their jobs (BLCR or app-specific).

9). Sysadmins can manually move jobs across the nodes
through checkpoint/restart and manually turn some

Centralized cluster

storage (NFS, Lustre)

Figure 2: HPC cluster setting assumed in this study.

benchmark suite for evaluating MPI-parallel, floating point, com-
pute intensive performance across a wide range of cluster and SMP
hardware. These benchmarks pose high requirements for the mem-
ory capacity of the compute nodes: typically 1 GB per rank (an
MPI process of the job) for the medium benchmark subset and 2
GB per rank for the large subset.

2.2 Experimental Setup

Setting up the experimental testbed for HPC research is chal-
lenging. The main purpose of the big HPC clusters is to facil-
itate research across the disciplines (physics, chemistry, simula-
tions, graphics, etc.). Cluster users need to submit and execute
their scientific codes. They do not typically require an access to
the whole cluster framework. HPC research, on the other hand,
requires full access to the cluster infrastructure. For example, aug-
menting the aforementioned HPC cluster framework with contention
awareness and testing the proposed solution, assumes: (a) root ac-
cess to the cluster RM and scheduler and (b) baremetal root access
to the compute nodes. This may be in conflict with the cluster
policies. Another challenge is cluster reliability. HPC cluster pro-
fessionals want their expensive supercomputers to provide value.
Faults are highly undesired. Doing research, on the other hand,
requires to break things (inducing several faults per day and inves-
tigating their causes is a good metric for research effectiveness).

FutureGrid offers a good trade-off between these potentially con-
flicting requirements: net-booting of compute nodes with user sup-
plied images. With this feature, we were able to recreate a research-
friendly HPC framework within a big cluster like so:

1) Create an image that contains a Linux distribution and a set
of cluster software tools (Maui, Torque, OpenMPI, etc.) that will
comprise the framework.

2) Upload the resulting image into a repository of the image man-
agement tool called Rain.

3) Book compute nodes from a FutureGrid cluster that supports
HPC (e.g. india) in exclusive mode. During the submission, the
user specifies an additional "os" parameter to qsub command with
the image name in the repository.

4) The custom image is then booted bare-metal onto the booked
nodes. They are being temporarily excluded from the cluster-wide
management for the duration of the job.

5) After the nodes are up and running, we need to configure our
own testing framework within the booked nodes (bring up the RM,

scheduler and PBS clients on each booked node, detect the amount
of compute resources available, etc.). This is done automatically
with a set of shell scripts.

6) Perform the experiments.

7) Upon the job completion, the nodes are rebooted into a default
image by Rain.

This setup allows to quickly perform, revise and scale HPC-
related experiments on a commodity scientific cluster. The instruc-
tions on configuring the framework using FutureGrid infrastructure
along with the shell scripts for deploying the experimental frame-
work are available at [7].

2.3 The Choice of the Cluster Scheduler and
Resource Manager

In this section, we look closely at the cluster resource manage-
ment system (the “blue” section in Figure 2) which comprises (1)
a resource (workload) manager (RM) and (2) a job (cluster) sched-
uler [16, 17]. We describe why we chose Maui as our cluster sched-
uler and Torque as a Resource Manager. A brief description of their
work is also provided.

The resource manager:

e Sets up a queuing system for users to submit jobs. The rea-
son for introducing queues is to prevent jobs from competing
with each other for limited compute resources of the HPC
cluster.

e Maintains a list of available compute resources.
e Receives job submission requests from cluster users.

e Periodically reports to the job scheduler information, nec-
essary for it to make a scheduling decision (updates on the
status of job queues, loads on compute nodes, resource avail-
ability, etc.).

e Enforces the scheduling decision received from the job sched-
uler (launches the job processes on the specified nodes).

e Reports the status of previously submitted jobs to the user
upon request.

The job scheduler receives periodic input from the resource man-
ager regarding job queues and available resources, and makes a

schedule that determines the order in which jobs will be executed.
In other words, job scheduler tells the resource manager what jobs
to run, when to run them, and where. Most resource managers have
an internal, built-in job scheduler, but system administrators usu-
ally substitute an external scheduler for the internal one to enhance
functionality (the features provided by external cluster schedulers
usually include advanced reservation, backfilling, preemption and
many more [18]).

We were choosing among three popular cluster schedulers: Moab,
Maui and Condor (Table 1). The choice was made in favor of Maui.
Moab, arguably the most popular cluster scheduler in the commer-
cial setups, does have more capabilities than Maui (especially in
the amount of monitoring data that is provided by the scheduler).
It is, at the same time, proprietary and quite expensive to install.
Maui, on the other hand, is open-source and free. Maui and Moab
are developed by the same company, with Moab being essentially
an extension for Maui. Several university cluster installations has
switched from Condor to Maui recently ([9] for instance). More-
over, Maui is being used by the Compute Canada clusters (in par-
ticular, by the BC-based WestGrid) and by the local HPC cluster in
the Faculty of Applied Science at SFU (The Colony HPC cluster).
All of this is important to us when choosing a scheduler to work
with.

The choice of Maui as the job scheduler largely determined choos-
ing Torque as the project’s RM since is is closely integrated with
(and as popular as) Maui itself (Table 2).

2.4 Maui Cluster Scheduler

Maui has a two-phase scheduling algorithm. During the first
phase, the high-priority jobs are scheduled using advance reser-
vation. In the second phase, a backfill algorithm is used to sched-
ule low-priority jobs between previously scheduled jobs. Advance
reservation uses execution time predictions (walltime) provided by
the users to reserve resources (such as CPUs and memory) and to
generate a schedule. Hence, it serves as the mechanism by which
the scheduler guarantees the availability of a set of resources at
a particular time. Given a schedule with advance-reserved, high-
priority jobs and a list of low-priority jobs, a backfill algorithm
tries to fit the small jobs into scheduling gaps. This allocation does
not alter the sequence of jobs previously scheduled, but improves
system utilization by running low priority jobs in between high-
priority jobs. To use backfill, the scheduler also requires a runtime
estimate, which is supplied by the user when jobs are submitted.
The following is the sequence of work flow of Maui [16, 18, 17]:

0. Maui starts a new iteration when the following event(s) occur:

a) Job or resource change event occurs (i.e. job termination, node
failure)

b) Reservation boundary event occurs

¢) A configurable timer expires

d) Via an external command

1. On every iteration, Maui obtains updated data from RM re-
garding node, job state, configuration.

2. Historical statistics and usage information for running and
completed jobs are updated.

3. Refresh Reservations. This step adjusts existing reservation
incorporating updated node availability. Changes in node avail-
ability may also cause reservations to slide forward or backward
in time. Reservations may be created or removed. If the job that
possess a reservation is idle (waiting in the queue) it is provided an
immediate access to the reserved resources.

4. A list is generated that contains all jobs which can be feasibly
scheduled. Availability of resources, job credentials, etc. are taken
into account in generating this list.

5. Prioritize feasible jobs according to the historical usage in-
formation (to enforce resource fair sharing), various job attributes,
scheduling policies and resources required by each jobs.

6. Schedule jobs in priority order, starting the jobs it can and
creating advanced reservations for those it cannot until it has made
reservations for the top N jobs where N is a cluster configurable
parameter.

7. Backfill. Maui determines current available backfill windows
in between reservations and attempts to fill them with the remaining
jobs which are eligible to run during these holes.

Maui supports job preemption. High-priority jobs can preempt
lower-priority or backfill jobs if resources to run the high-priority
jobs are not available. In some cases, resources reserved for high-
priority jobs can be used to run low-priority jobs when no high-
priority jobs are in the queue. However, when high-priority jobs
are submitted, these low-priority jobs can be preempted to reclaim
resources for high-priority jobs.

3. CONTENTION-AWARE MODIFICATIONS

The Torque/Maui installation outlined on Figure 2 is fully func-
tional and can schedule jobs as is. The point of this work is to
augment this typical HPC cluster setup with contention awareness,
which it is currently lacking. Figure 3 provides the description of
the necessary additions given in red. The list of changes include:

e An opportunity to supply contention-descriptive metrics in
the PBS scripts upon job submission (step 1).

e A virtual framework (OpenVZ) on each cluster node that al-
lows installing RM monitoring tools (pbs_moms) and soft-
ware libraries (OpenMPI, etc) inside the virtual machines
(OpenVZ containers) instead of on the nodes themselves.
This allows running jobs inside the containers as opposed to
baremetal. The actual compute nodes are thus hidden from
RM and JS, they now treat containers as nodes when per-
forming the cluster-wide scheduling (steps 3 and 4) or when
checkpointing jobs for fault tolerance (step 8).

e Online detection of the contention- and communication-sensitive
jobs as they run on the compute nodes with Clavis user level
daemon. Using a contention-aware scheduling algorithm within
each node as opposed to the default OS scheduler to address
shared resource contention (step 5).

e Using the data obtained from Clavis, the framework periodi-
cally generates a contention-aware report about resource us-
age in the cluster. It then shares the report with the job sched-
uler and the cluster users upon request (steps 6, 7 and 10).

e Performing simple automatic contention- and power- aware
cluster-wide scheduling decisions, independently of the job
scheduler (step 9).

We will describe these changes below.

The contention-descriptive metrics.

The first question that we had was what metrics to use in order to
characterize the cluster job as sensitive to (a) resource contention
within the memory hierarchy of a cluster compute node and (b)
accessing cluster interconnects?

Multiple studies investigated ways of reducing resource contention
within a mulicore server. One of the promising approaches that
emerged recently is contention-aware scheduling. Consider a work-
load of memory-intensive applications, i.e., applications that are
characterized by a high rate of requests to main memory. Follow-
ing the terminology adopted in an earlier study [21] we will refer to

Cluster scheduler

Description

RM internal schedulers

Open Source. Usually are very simple and are hence not used in a realistic cluster environment.

Maui

Open Source. Maui extends the capabilities of base RM schedulers by adding the following features:
- Job priority policies and configurations

- Job advance reservation support

- QOS support including resource access control

- Extensive fairness policies

- Non-intrusive *Test” modes

- and many more [4].

Moab

Like Maui, is capable of supporting multiple scheduling policies, dynamic priorities, reservations, and
fairshare capabilities. In addition, has integrated billing mechanisms and an advanced graphical cluster
administration with integrated documentation and wizards. Unfortunately, Moab is proprietary software
which makes it difficult to analyze within the academia.

Condor

Supports many features implemented in Maui (backfill, reservations, etc.). Maui, however, became a
popular scheduler for academic HPC environments (for example, our local WestGrid cluster facilities
use Maui for scheduling) so we opted for it.

Table 1: Comparison of different job schedulers.

| Resource manager | Description

OpenPBS An initial Open Source RM capable of a basic job maintenance and control functionality. It was a
starting point for many advanced RMs, including Torque.

Torque This is an advanced Open Source RM based on the original OpenPBS project. Torque incorporates
many advances in the areas of scalability, reliability, and functionality and is currently in use at tens of
thousands of leading government, academic, and commercial sites throughout the world.

SLURM Simple Linux Utility for Resource Management is an open-source RM designed for Linux clusters. It

has many good features including portability and highly tolerance of system failures (including failure
of the node executing its control functions). Torque, however, is developed by the same company as
Maui and is meant to be used with it by default. It is also believed that SLURM is hard to configure
properly to work with Maui ([8] for instance).

Table 2: Comparison of different resource managers.

desktop, etc)

1). User connects to
the HPC cluster via
client and submits a
job with a PBS
script. The user can
characterize the job
with a contention
metric (devil,
comm-devil).

Head node
RM, JS, Clavis-HPC

Monitoring (JS GUI),
control (IPMI, iLO3, etc)

(Ethernet, InfiniBand)

Compute nodes
contention monitors (Clavis)
OpenVZ containers
libraries (OpenMPI, etc)
RM daemons (pbs_mom)

Cluster network

Centralized cluster
storage (NFS, Lustre)

Figure 3: HPC cluster setting with contention-awareness.

these applications as devils. Applications with a low rate of mem-
ory requests are referred to as turtles. Our methodology from the
earlier work [13, 14, 22] allowed us to identify the last-level cache
(LLC) miss rate, which is defined to include all requests issued by
LLC to main memory including pre-fetching, as one of the most
accurate predictors of the degree to which applications will suffer
when co-scheduled in the memory hierarchy of a multicore node.
‘We consider the process a devil if it has more than 30 LLC misses
per 10,000 retired instructions. Otherwise, the process is a turtle.

When choosing a metric that describes the communication in-
tensiveness of a job (how sensitive the job is to a slowdown due to
accessing cluster interconnects), we wanted to validate, if the net-
work traffic of the job correlates with its performance level. Our
initial experiments [10] have in fact shown a correlation of 0.73 be-
tween the amount of traffic transferred by a job across the network
and the job slowdown due to that. For the workloads we consid-
ered (SPEC MPI 2007) the job slowdown only happens on slow
networks (up to 100MbE) or when there is a network impairment

happening.

The two metrics (LLC missrate and job traffic) are parts of the
sensitivity profile of the cluster job. The user can obtain them from
the contention-aware resource usage report (step 6) during a profil-
ing run. They can then be included in the resource list specified in
the submission PBS script, together with the already existing pa-
rameters of number of cores, memory, etc. This new information
will help the framework to perform contention-aware scheduling
decisions in step 9. For example, if the job appears to be sensi-
tive to accessing the cluster interconnect, as is suggested by the big
network traffic value from the previous runs, the scheduler might
take it into account and try to schedule the job on as few nodes as
possible. The high missrate is a good reason for a scheduler to pre-
vent the job submission on the nodes together with other memory
intensive jobs.

HPC framework virtualization.

Virtualization is a popular technique that allows running several
OS instances simultaneously within a single hardware node. It is
the basis of the cloud technology: users of such services as Amazon
EC2, Microsoft Azure and HP CloudSystem run their workloads on
virtual machines instead of the hardware nodes themselves. Virtu-
alization allows the datacenter administrators to effectively hide the
underlying hardware infrastructure from the clients, thus making
the cloud datacenter maintenance much more flexible. The virtual-
ization offers the following main advantages when being applied to
a datacenter:

The ability to live migrate workload across multiple hardware
nodes. Live migration allows moving a full job environment (pro-
cesses, memory, sockets, etc) between the hardware nodes on-the-
fly. This is different from what is used in HPC nowadays, namely
checkpointing a job, terminating it and restoring on different set
of nodes®. If done correctly, live migration does not terminate the
open network connections of the job, nor does it significantly affect
the job performance. Live migration is often being used to oversub-
scribe the hardware nodes in the cloud. Instead of running on their
own dedicated machines, several underutilized virtual instances are
consolidated on fewer nodes, thus sharing their resources, which
leads to a more effective usage of the datacenter infrastructure.

The ability to make a snapshot of a running VM. Unlike live mi-
gration, the preserved state of the running job is now moved not
to a different node, but is stored locally on the disk, or on the cen-
tralized file storage, ready to be restored in case there are software
or hardware faults in the datacenter. This ability of a virtualized
datacenter framework to save the running VM state leads to a bet-
ter fault tolerance in the datacenter. Users are no longer concerned
about saving the intermediate data of their applications manually
for a possible later restore, they can now issue a simple VM check-
point request, independent of the software running inside the VM.

Perhaps the main outcome of creating a virtualized datacenter is
that virtual workload scheduling onto the hardware nodes becomes
completely hidden from the cluster users. For instance, in Amazon
EC2 the users only request the virtual images to run their software
on. They do not know what hardware nodes host their workload.
The Amazon cluster administrators can consolidate the load at any
time with live migration and turn the freed nodes down to save

3The checkpointing mechanism can be implemented either manu-
ally or by using a special libraries, BLCR being one example. The
difficulty with the first method is that it is program dependent: only
the application developers know what data to save on the disk for
the later restore. While BLCR offers a more universal approach,
the restore process may not go as planned: some programs do not
work with BLCR and those that do work may experience PID con-
flicts when being restored on different nodes. In both cases, the
open connections of the moving jobs have to be terminated.

power. The users are usually unaware of this underlying cluster
scheduling.

The virtualization can be a very useful technique, however, so far
it did not gain much popularity in HPC. Supercomputers are still
largely scheduling jobs on their compute nodes baremetal. One
of the main reasons is that virtualization is not free, there is an
overhead of using it. The cluster workloads pose great demands on
CPU, memory, network and IO subsystems of the supercomputer.
And while CPU virtualization is not a problem these days due to
Hardware Assisted Virtualization [3] implemented in most modern
processor models, the overhead of virtualizing memory, network
and IO can be substantial [19, 15, 20].

There exist many different virtualization solutions, each of which
utilizes its own approach to virtualization. A good candidate for an
HPC-based virtualization must provide near native memory, net-
work and 10 performance for the cluster MPI workloads. The op-
erating system-level virtualization technology called OpenVZ does
offer such capabilities. Unlike other virtualization technologies
(KVM, VMWare, Xen to name a few) that are capable of virtu-
alizing the entire machine and can run multiple operating systems
at once, OpenVZ uses a single patched Linux kernel that is running
both on the host and in the guests. It uses a common file system
so each VM is just a directory of files that is isolated using chroot
and special kernel modules. However because it doesn’t have the
overhead of a full hypervisor, it is very fast and efficient: different
studies have shown a 1-3% performance penalty for OpenVZ as
compared to using a standalone server [6, 19].

We would also like to point out that the memory management in
OpenVZ highly favors the contention-aware scheduling on NUMA
multicore nodes. In other virtualization solutions memory man-
agement is usually performed by the guest and host OSes indepen-
dently. It is generally very hard to say which pages of a total VM
memory footprint belong to a particular MPI rank that is executing
inside the guest. The memory in OpenVZ, on the other hand, is
managed by a single kernel. As a result, the migration of the guest
memory between different NUMA nodes is as easy as migrating
memory of the workload executing baremetal.

The contention-aware scheduling framework introduced in this
paper has OpenVZ support. We found the following considerations
to be important when using OpenVZ for the HPC-based virtualiza-
tion:

Like many other virtualization solutions, OpenVZ does support
live migration (moving a VM from one physical server to another
without shutting down the VM or terminating its open connec-
tions). Because OpenVZ is essentially a chroot environment on the
host machine, the copying of the disk contents to the new server
during the live migration is being done incrementally with rsync:
the majority of files are copied beforehand so that, when the actual
migration happens, it finished faster. Unfortunately, the same does
not hold for the memory migration between the physical nodes.
OpenVZ does not currently support the incremental memory mi-
gration®. TInstead, it uses the approach that can be described as
“suspend — checkpoint — move — restore — resume”, in which the
VM is being frozen and its whole state is saved to a file on disk.
This file is then copied to another machine and the VM can then
be unfrozen (restored) there. This approach is more reliable than
incremental memory migration (if the memory footprint changes
too rapidly, the incremental approach may simply hang), but it can
take longer to complete. This is especially true for the MPI cluster
jobs that usually have big memory footprints. We provide the data

“The source VM continues running while certain pages are moved
across the network to the new machine. To ensure consistency,
pages modified during this process must be re-sent.

on live migration overhead with OpenVZ in Section 4.

For the live migration to be successful, the VM memory foot-
print should be locked pages free. That assumes the PBS and MPI
libraries installed inside the VM as well as the cluster workload
running on it should be compiled without locked pages support.

The fault tolerance with OpenVZ is possible, but may be lim-
ited to the lifetime of the networking sockets preserved in the snap-
shot. In other words, if the time period between checkpointing and
restoring is longer than the tcp socket lifetime, some connections
can be terminated upon restore. This can be addressed by bumping
tep limits via Linux sysfs.

OpenVZ does not currently offer an InfiniBand support. How-
ever, developers may include one in future releases of OpenVZ [19].

In order to run cluster jobs inside the containers as opposed to
baremetal, we install RM monitoring tools (pbs_moms) and soft-
ware libraries (OpenMPI, etc) inside the OpenVZ virtual containers
instead of on the nodes themselves. Just like with the cloud instal-
lations, the actual compute nodes are now hidden from RM and JS,
they now treat containers as nodes when performing the cluster-
wide scheduling. That allows to seamlessly, without terminating
the jobs, move the workload across the nodes if necessary. When
deciding how many containers to create per each hardware node,
we must take into account the number of physical cores, memory
and the disk space available. Although most of the kernel modules
are shared between containers on the node, each one creates its on
Linux file structure on the disk. For our clusters, we found that the
two containers per node is a reasonable value: it allows to mitigate
the contention effects while not consuming much of a disk space or
network traffic during migrations.

The node-level scheduling.

Previous studies have demonstrated that the contention effects
can incur severe degradation to the CPU-intensive cluster work-
loads [13, 10]. At the same time, the default Linux kernel sched-
uler that usually assigns ranks to cores within each compute node
is not contention aware. In order to address this gap, we created
Clavis. Clavis is a user level daemon written in C that is designed
to implement various scheduling strategies under Linux running on
multicore and NUMA machines. It is released under Academic
Free License (AFL) and its source is available for download [12].

Clavis is started on each physical server when it is booted. It
then proceeds as follows:

e It automatically detects the OpenVZ containers present on
the system and compute bound MPI ranks running in each
of them. The rest of the processes are no interest to us and
hence are scheduled according to Default.

e [t monitors the LLC missrate of the thus detected processes
and classifies them as either devils or turtles.

o It also measures traffic that the workload inside the local con-
tainers have exchanged with the rest of the cluster. It creates
a communication matrix that reflects what containers on the
local machine are communication-bound.

e It schedules the detected ranks using its contention-aware
scheduling algorithm. For the NUMA multicore servers, we
use the algorithm called Distributed Intensity NUMA Online
(DINO) [13]. DINO separates devils in the memory hierar-
chy of the multicore system as far from each other as pos-
sible, thus reducing contention for memory hierarchy of the
node. It uses missrate metric to detect the memory inten-
siveness of the applications (whether its a devil or a turtle).
When DINO moves the process away from its memory on

the NUMA memory socket, it later pulls the memory close
to the process to preserve memory locality.

e Finally, it creates a concise profile of the workload in each
container. It includes the information about CPU utiliza-
tion, allocated memory size, traffic and contention class of
the container MPI ranks as follows.

Every line in the report corresponds to a particular compute bound
PID and contains the information about the process usage charac-
teristics:

<PID of the process> (<timestamp>):

<PID of the spawning shell (needed to assign the process to the
particular cluster job in Torque)>

<process binary name >

<OpenVZ container ID (CTID)>

< Contention class (devil/turtle)>

<Resources used>

For example: 19415 (SatJun 2 00:49:06 2012): 7145 GemsFDTD_base.a

132 devil CPU 100 MISS RATE 121.34 MEM 4.000000 TRFC
SNT 120.12 RCVD 5.56 10 WR 10.01 RD 25.66

This data is then saved under the name " <node hostname > .report"
on the cluster storage for the later use in cluster-wide scheduling
(see below).

Resource usage reports.

We now need the ability to aggregate the resource profiles col-
lected by Clavis daemons on various compute nodes into contention-
aware resource usage reports for HPC cluster as a whole. This
is done by the Torque RM whose pbs_mom and pbs_server were
modified within this work to periodically perform the following:

e In each scheduling interval, Torque generates a list of active
containers by parsing the pbsnodes command output.

e It then reads the Clavis resource usage report for each con-
tainer from the cluster storage.

o After that, Torque determines which MPI ranks belong to

which cluster jobs. This is done by accessing pjob->ji_gs.ji_jobid

member of its internal job data structure. The value is the
PID of the shell that spawned the MPI job (for the given MPI
rank it is always the Parent PID of its Parent PID). This is
matched with the value supplied in the usage report.

The information aggregated per job in Torque is then supplied
to the cluster scheduler via standard communication means. It is
saved as additional parameters in pjob->ji_wattr array and can be
viewed upon request.

The cluster-wide scheduling with Clavis-HPC.

The Maui job scheduler receives periodic input from the resource
manager regarding job queues and available resources. It then makes
a queue that determines the order in which jobs will be executed.
Maui does not consider contention effects in its decisions. It is also
not able to migrate the load across the cluster on-the-fly when the
conditions in which workload is running change.

To demonstrate the potential of our virtualized contention-aware
cluster framework, we created Clavis-HPC, a user level cluster-
wide scheduler written in Python. It works in parallel with Maui
and schedules the containers across the physical nodes, while Maui
manages the job queue of the workload running inside the contain-
ers. Clavis-HPC works as follows:

1) It reads the information about the contention and communica-
tion intensiveness of each container in the cluster from the resource
usage report.

2) Simultaneously, it measures the power consumption of each
node provided by OpenIPMI or iLO3.

3) The information obtained in the first two steps is then used by
Clavis-HPC to make a decision about what to do next. The sched-
uler can (a) leave a given container unchanged; (b) decide to mi-
grate the container to a different node and (c) turn some node off. A
scheduling decision is thus a set of instructions about which phys-
ical servers remain active and which physical server will host each
container. Each scheduling decision is valid for the next scheduling
interval, upon the end of which it is reevaluated. Once the decision
is made, the framework enforces it.

For now, we are performing simple scheduling decisions that try
to optimize one of the three cluster-wide goals: (1) improve the
performance by mitigating the shared resource contention in the
cluster; (2) save power by consolidating the load on fewer servers
and turning the idle nodes off; (3) improve performance by reduc-
ing the communication overhead via slower network in case of im-
pairment. All of the decisions do not interrupt the active cluster
workload or get in the way of the Maui queue management. Sec-
tion 4 further describes the results of our scheduling.

4. EXPERIMENTAL RESULTS

In this Section we demonstrate what benefits the contention-
aware cluster framework described above can provide on our test-
ing clusters. Before running the cluster-wide experiments, we de-
cided to take a quick look at the MPI apps we are going to run
(Table 3). As can be seen, more than half of the apps are mem-
ory intensive with high missrate (we call them devils). The rest are
turtles (low missrate) or semi-devils (the missrate is just above the
threshold). We have used two types of inputs in our experiments:
the medium and the large input sets from SPEC MPI 2007. When a
program5 is running with the large set, its name on the graphs starts
with “I"”.

Name LLC Missrate * | Traffic Class
10.000 (mbps)

milc 15.95 70 devil
leslie3d 83.37 28 devil

fds4 78.13 0 devil
pop2 20.64 67 turtle
tachyon 0.48 0,08 turtle
lammps 35.22 27 semidevil
SOCOITO 87.82 36 devil
zeusmp2 33.81 14 semidevil
Iu 65.55 18 devil
GemsFDTD 129.12 35 devil

Table 3: SPEC MPI 2007 apps characterization.

First of all, we have decided to perform the experiments to see
if our DINO contention-aware algorithm provides any benefits to
the MPI cluster workloads when scheduling on the node level. Fig-
ure 4 shows the average performance improvement for devils and
non-devils across different runs on Dell_Opteron cluster. As can
be seen, DINO outperforms Default (denoted as “no DINO”) for
all devils and semi-devils and does not make any difference for
turtles. This is expected, since turtles do not exhibit high mem-
ory intensiveness and hence are prone to the memory contention
effects. The benefits from using contention-aware scheduling can
be even bigger if the HyperThreading is enabled in the cluster as
is the case for HP_Nehalem on Figure 5. Here more ranks are

SDue to memory limitations and the lack of enough nodes to scale
the load at the time, we were not able to test some of the large set
workloads on Dell_Opteron and IBM_Nehalem.

able to execute per each compute node and the contention effects
are thus exacerbated. Figure 7 shows the modest improvements on
IBM_Nehalem. This is due to the fact that the Nehalem proces-
sors installed in it have rather big (2MB per core) last-level caches
which softens the contention effects.

Next, we wanted to demonstrate the benefits from the contention-
aware cluster-wide scheduling. Figure 4 shows that, for all the dev-
ils, there is a benefit in scheduling a 12 process job across two nodes
(6 processes per node) rather than scheduling it on one node. The
slowdown for semidevils is only present when the given semidevil
is co-scheduled with a devil on two nodes. Figure 4 also shows the
performance improvement of a solution where the job class is de-
tected online and devils are spread across two nodes with OpenVZ
live migration feature relative to solution where the same job runs
on one node till completion. We make the following conclusions
from these results:

e Separating devil processes across nodes is beneficial for the
overall performance of an MPI job.

e Those jobs that cannot benefit from separation (turtles) or
those for whom migration penalty outweighs performance
benefits (semi-devils) can be dynamically detected by the
framework and used for load balancing (to plug the idle slots
on partially loaded nodes).

o If the job is very communication intensive (i.e., pop) and not
memory intensive its processes should be placed on fewer
nodes.

e OpenVZ containers incur little overhead on its own. There
can be performance degradation after migration though, if
contention-unaware algorithm (like Linux Default) is used
on the cluster nodes. Our contention-aware DINO algorithm,
on the other hand, is able to provide solution, which is close
to the best separated one (when ranks are started on different
nodes from the start and no migration occurred).

The overhead of OpenVZ migration is bigger for the large set
jobs on Figure 5, as the time it takes to migrate container from one
node to another is proportional to the total memory footprint of the
MPI ranks running inside it.

Figure 6 demonstrates the amount of power savings that can be
obtained by consolidating the load on fewer servers with live mi-
gration and turning the freed nodes off. In these experiments, the
compute nodes of HP_Nehalem were half loaded in the beginning.
This is a typical situation in an underloaded clusters, when the goal
of the job scheduler is to load balance jobs across the nodes. Now
let’s assume that the power supply of the supercomputer has de-
creased. This can be the case if it is operating on renewable sources
of energy, whose output is not stable and changes throughout the
day. The workload is now migrated onto half the nodes and the rest
are switched off (except for server2 which serves as the head node).
This is done live without interrupting the load or affecting the Maui
job queue. When the supply is risen again, the load can be again
spread across the cluster.

Finally, Figure 7 shows that the performance of the cluster work-
load can be improved on-the-fly in case the cluster network starts
to falter®. In these experiments, the workload has been once again
consolidated on fewer nodes, but this time, the containers running
processes of the same job were placed together after migration. We
see that the framework is able to improve performance by reducing

®We use netem kernel module on the compute nodes to induce a
modest network impairment as described in [5].

Performance improvement relative to 1
node (12 ranks) with DINO run, %

02 node (6 ranks per node) run without migration

-20 1 OThe price of running under OpenVZ on 1 node (12 ranks per node)
-30 - B2 node (6 ranks per node) run with OpenVZ and no DINO (OpenVZ migration overhead included)
-40 - M2 node (6 ranks per node) run with OpenVZ and DINO (OpenVZ migration overhead included)
D R R) R R R R R R)
N N S ¥ S N N N N N A
& & & ‘9«" ® & F & &F & ‘96'
A 2 o \ X o N S Q N
& N & & & & & & & Q
€ > & & s & L 3¢ ¢
& o o~ o Q o
& & s &o d}(‘ vg%
\,b(“ ©

Figure 4: Performance improvement given by contention aware framework with different migration options on Dell_Opteron.

12000 -
B 1 node Linux default

10000 - ¥ 1 node DINO
2 nodes DINO

8000 - o
M OpenVZ live migration cost

6000

4000 -

2000

Average execution time, sec

&

O L L O

¢ & & ¢

F & & &
2 W

Figure 5: Performance improvement and OpenVZ migration cost given by contention aware framework on HP_Nehalem.

350 350
=——serverQ ——serverd
E] 300 E 300
= =——serverl = rvers
2 250 H 250
% 200 E 200
E 150 E 150
g g
E 100 % 100
50 50
g g
] 0 LI B B B B B B L H [e s e e L A}
w 0 60 120 180 240 00, . 360 “ 0 60 120 180 240 300, . 360
time, min time, min
350 350
=—serverl ——serverf
E] 300 E 300
= =——server3 = —server?
2 250 H 250
% 200 E 200
E 150 E 150
g g
E 100 % 100
50 50
g g
] 0 LI e e H L e e e B B L]
w 0 60 120 180 240 300, . 360 “ 0 60 120 180 240 300, .3
time, min time, min

Figure 6: Power savings from the workload consolidation given by contention aware framework on HP_Nehalem (1IGemsFDTD - llu

workload).

the communication overhead via slower network in case of impair-
ment.

5. CONCLUSION

In this paper we demonstrated how the shared resource con-
tention can be addressed when creating a scheduling framework
for a scientific supercomputer. The proposed solution is comprised
of the Open Source software that includes the original code and
patches to the widely-used tools in the field. The solution (a) al-
lows an online identification of the contention-intensive jobs and
(b) provides a way to make and enforce a simple contention-aware

scheduling decisions both on cluster level and within each multi-
core node.

We are currently working on improving our algorithms to simul-
taneously satisfy several conflicting scheduling goals (reduce con-
tention, reduce power, reduce communication overhead) within the
described cluster environment simultaneously.

6. ACKNOWLEDGMENT

This material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 0910812 to Indiana
University for "FutureGrid: An Experimental, High-Performance

12000 -

m dino 1 node
M default

dino 2 nodes
m dino 2 nodes (network impairment)

10000 -

8000

6000

4000

2000

Average execution time, sec

milc socorro tachyon fds

zeusmp leslie lammps dleslie Itachyon

Figure 7: Performance improvement from the workload consolidation given by contention aware framework on IBM_Nehalem.

Grid Test-bed." Partners in the FutureGrid project include U. Chicago,
U. Florida, San Diego Supercomputer Center - UC San Diego, U.
Southern California, U. Texas at Austin, U. Tennessee at Knoxville,

U. of Virginia, Purdue U., and T-U. Dresden.

7.
(1]

(2]
(3]
(4]
(3]

(6]
(7]

(8]

(9]
[10]
(11]
(12]
[13]
[14]
[15]

[16]

REFERENCES

A Study of Hyper-Threading in High-Performance
Computing Clusters. [Online] Available:

http://www.dell.com/content/topics/global.aspx/power/en/ps4q02_le

Compute canada/calcul canada resources. [Online]
Available:
https://ccdb.computecanada.org/browse/resources_in.
Hardware Assisted Virtualization. [Online] Available:
http://en.wikipedia.org/wiki/Hardware-
assisted_virtualization.

Maui cluster scheduler fetures. [Online] Available:

http://www.clusterbuilder.org/encyclopedia/alphabetized/m/maui-

cluster-scheduler.php.
Network emulation with netem kernel module. [Online]
Available:

[17] IQBAL, S., GUPTA, R., AND FANG, Y.-C. Job

scheduling in hpc clusters. [Online] Available:
http://www.dell.com/downloads/global/power/ps1q05-
20040135-fang.pdf .

QUINN, D. J., JACKSON, D., SNELL, Q., AND CLEMENT,
M. Core algorithms of the maui scheduler. pp. 87-102.
REGOLA, N., AND DucoM, J.-C. Recommendations for
Virtualization Technologies in High Performance
Computing. CLOUDCOM.

TIKOTEKAR, A., VALLEE, G., NAUGHTON, T., ONG, H.,
ENGELMANN, C., AND SCOTT, S. L. Euro-par 2008
workshops - parallel processing. 2009, ch. An Analysis of
HPC Benchmarks in Virtual Machine Environments.

XIE, Y., AND LOH, G. Dynamic Classification of Program
Memory Behaviors in CMPs. In CMP-MSI (2008).
ZHURAVLEYV, S., BLAGODUROV, S., AND FEDOROVA, A.
Addressing Contention on Multicore Processors via
Scheduling. In ASPLOS (2010).

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

Open VirtualiZation. [Online] Available:
http://en.wikipedia.org/wiki/OpenVZ.

Optimizing Shared Resource Contention in HPC Clusters
(project webpage). [Online] Available:
http://hpc-sched.cs.sfu.ca/ .

Slurm/maui configuration notes. [Online] Available:
http://www.supercluster.org/pipermail/mauiusers/2005-
January/001442.html.

Transition to torque/maui. [Online] Available:
http://www.urc.uncc.edu/urc/old-announcements/transition-
to-torquemaui/ .

BLAGODUROV, S., AND FEDOROVA, A. In search for
contention-descriptive metrics in HPC cluster environment.
ICPE.

BLAGODUROV, S., AND FEDOROVA, A. User-level
scheduling on NUMA multicore systems under Linux. In
Linux Symposium (2011).

BLAGODUROV, S., AND FEDOROVA, A. User-level
scheduling on NUMA multicore systems under Linux. In
Linux Symposium (2011).

BLAGODUROV, S., ZHURAVLEV, S., DASHTI, M., AND
FEDOROVA, A. A Case for NUMA-Aware Contention

Management on Multicore Systems. In USENIX ATC (2011).

BLAGODUROV, S., ZHURAVLEV, S., AND FEDOROVA, A.
Contention-aware scheduling on multicore systems. ACM
Trans. Comput. Syst. 28 (December 2010), 8:1-8:45.
EL-KHAMRA, Y., KiM, H., JHA, S., AND PARASHAR, M.
Exploring the Performance Fluctuations of HPC Workloads
on Clouds. CLOUDCOM.

GUPTA, A., AND BARUA, G. Cluster schedulers. [Online]
Available: http://www.stanford.edu/ abhig/Docs/Cluster-
SchedulerReport.pdf .

