
Optimizing Shared Resource Contention in HPC Clusters

Sergey Blagodurov sergey_blagodurov@sfu.ca
Alexandra Fedorova alexandra_fedorova@sfu.ca

6). RM generates a report about resource usage in the cluster
 during the last scheduling interval. The report contains
 process classes (devil or turtle, communicates or not).
7). Users can checkpoint their jobs with (BLCR or app-specific
 universal OpenVZ snapshots).
8). Sysadmins can (manually move jobs perform automatic
 on-the-fly job consolidation) across the nodes through
 (checkpoint/restart OpenVZ live migration).

2). Resource Manager (RM) on the head node receives
 the submission request and passes it to
 the Job Scheduler (JS).
3). JS determines what jobs execute on what (nodes
 OpenVZ containers) and passes the scheduling decision
 back to RM.
4). RM starts/stops the jobs on the given (nodes
 OpenVZ containers).

1). User connects to the
HPC cluster via client

and submits a job with a
PBS script.

Clients (tablet, laptop,
desktop, etc)

Head node
RM, JS, Clavis-Cluster

Centralized cluster
storage (NFS, Lustre)

Cluster network
(Ethernet, InfiniBand)

Monitoring (JS GUI),
control (IPMI, iLO3, etc)

Compute nodes
Clavis contention monitor

OpenVZ containers
libraries (OpenMPI, etc)

RM daemons (pbs_mom)

A typical HPC job management cycle with our modifications highlighted in red: (state-of-the-art Clavis-HPC)

5). The (baremetal
virtualized) jobs execute on

the (nodes containers)
under the (default OS kernel

scheduler contention
aware user-level scheduler
Clavis-DINO). They access
cluster storage to get their

input files and store the
results.

 The problem: contention for shared multicore resources (shared caches, memory controllers,
 NUMA domains, etc.) within cluster nodes incurs up to 40% severe degradation to job performance.
 HPC clusters are not contention-aware, with no virtualization to migrate jobs around. HPC clusters are not contention-aware, with no virtualization to migrate jobs around.

The solution: Clavis-HPC, a novel contention-aware virtualized HPC framework. Here is how:
1) We monitor job processes on-the-fly and classify them with 2 parameters:

a) a process is a devil if it is memory intensive, has high last-level cache missrate, otherwise - a turtle.
b) if a given process is communicating with other processes.

2) We develop a multi-objective scheduling algorithm Clavis-Cluster that simultaneously:
a) minimizes the number of devils on each node;
b) maximizes the number of communicating processes on each node;
c) minimizes the number of powered up nodes in the cluster.

3) After the new schedule is found, we enforce it by introducing a low-overhead live migration into cluster:
the job scheduler places processes into OpenVZ containers, Clavis-Cluster migrates containers.

