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ABSTRACT
The increasing demand of big data analytics for more main memory
capacity in datacenters and exascale computing environments is
driving the integration of heterogeneous memory technologies. The
new technologies exhibit vastly greater differences in access laten-
cies, bandwidth and capacity compared to the traditional NUMA
systems. Leveraging this heterogeneity while also delivering appli-
cation performance enhancements requires intelligent data place-
ment.We presentKleio, a page scheduler withmachine intelligence
for applications that execute across hybrid memory components.
Kleio is a hybrid page scheduler that combines existing, lightweight,
history-based data tiering methods for hybrid memory, with novel
intelligent placement decisions based on deep neural networks. We
contribute new understanding toward the scope of benefits that
can be achieved by using intelligent page scheduling in comparison
to existing history-based approaches, and towards the choice of the
deep learning algorithms and their parameters that are effective for
this problem space. Kleio incorporates a newmethod for prioritizing
pages that leads to highest performance boost, while limiting the
resulting system resource overheads. Our performance evaluation
indicates that Kleio reduces on average 80% of the performance gap
between the existing solutions and an oracle with knowledge of
future access pattern. Kleio provides hybrid memory systems with
fast and effective neural network training and prediction accuracy
levels, which bring significant application performance improve-
ments with limited resource overheads, so as to lay the grounds for
its practical integration in future systems.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems; • Computing methodologies → Machine learning
approaches; •Hardware→Memory and dense storage;Anal-
ysis and design of emerging devices and systems; • General
and reference → Performance;
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1 INTRODUCTION
Modern systems are frequently designed using heterogeneous mem-
ory components. These memories are typically leveraged for ex-
tending main memory capacity or for caching purposes. There are
natural trade-offs in the hybrid memory systems (HMS) compris-
ing heterogeneous components. Typically deeper memory (further
from the compute unit (CPU/GPU) hasmore capacity albeit at larger
latency and reduced bandwidth.

We consider one such HMS scenario comprising of DRAM and
Non Volatile Memory (NVM) and focus on the problem of extending
main memory capacity. An important artifact of HMS is addressing
the limitations of increased latency and decreased bandwidth with
deeper memories. In our case, a page scheduler – the memory
management layer of operating and runtime systems – is respon-
sible for the page migration across the heterogeneous memory
components. An effective page scheduler is responsible for ensur-
ing that hot pages – the ones that are accessed frequently – are readily
available in faster memory (DRAM). This is an intricate task, espe-
cially it is a complex combination of access pattern of pages in an
application, and its runtime parameters (input size, strong/weak
scaling, etc.). To address this challenge, several researchers have
considered solutions whose implementation can be integrated in
the hardware-, compiler-, Operating System-, runtime-, hypervisor-
or application profiling-level [7, 9, 11, 15, 20, 27–29]. A common
theme among these approaches is that they rely exclusively on
historic information about page accesses. Specifically, the state-
of-the-art [20, 27, 28] in system-level dynamic page management
solutions for HMS utilize the immediate observed behavior to make
decisions on the best future page placement. However, as we show
in this paper, the mispredictions regarding future page access re-
sulting from use of historic information alone, can leave an up to
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Figure 1: The high cost of DRAM in large capacities limits its
future use andmakes a case for denser but cheaper technolo-
gies (e.g., NVM) to be used in extending the system’smemory
capacity. In such a hybrid system the page scheduler period-
ically migrates pages such that the ones that are frequently
accessed get allocated in the fastest available memory tech-
nology (e.g., DRAM) until the capacity is full.

55% gap in the obtained versus attainable application performance,
thus failing to fully leverage the aggregate HMS resources.

An Operating System (OS) level memory management solution
may be implemented inside the OS kernel’s memory manager, or
on the user level with OS system calls for page migration, similar to
Linux move_pages(). In this potential implementation, the current
state-of-the-art History page scheduler [20] would periodically
migrate pages, such that those that are hot for the current sched-
uling epoch, get allocated in DRAM until capacity is full, with the
hope to be frequently accessed during the next scheduling epoch
(Figure 1).

Although the History page scheduler is relatively straightfor-
ward and practical to implement, its effectiveness in providing
applications with fast (i.e., in-DRAM) data accesses inherently de-
pends on the application data access behavior. When comparing
with an Oracle page scheduler, which uses a-priori knowledge
to periodically migrate application pages such that those that are
indeed highly accessed in the next scheduling epoch (hot pages) get
allocated in DRAM until capacity is full, we observe that a history-
based page scheduler will result in significant reduction in fast
memory accesses and subsequent application slowdown (Section 2).
The exact impact depends on application data access behavior and
the capacities and performance characteristics of the different mem-
ories. This illustrates an important point: Purely history-based page
scheduling methods are limited in the performance opportunities
they can provide to applications running on hybrid memory systems.
Instead, they must be augmented with more intelligent, predictive
methods.
Why a solution with Machine Intelligence (MI)?
As shown in Section 2, the immediately observed memory access
behavior is insufficient in capturing the necessary information that
predicts future behavior for making clever placement decisions.
Yet, a larger window of accesses should allow the ability to cap-
ture the historic information (long term access, and also leverage
the recent accesses (short term access) for effective page placement.
There are a few design possibilities: 1) Use simple methods such
as Markov chains for handling the temporal aspect [25], 2) use
advanced techniques with machine intelligence that provide mech-
anisms to handle temporal data capturing both short and long term

page access patterns. Such techniques are reinforcement learning
and deep neural networks (recurrent neural / long short term mem-
ory networks), which are currently widely explored to solve various
systems problems as we summarize in Section 8. In this work, we
explore these techniques and choose the one that achieves the goals
specified at the end of Section 2.

Paper Contributions
The primary goal of this work is using machine intelligence to build
a hybrid memory page scheduler that can bridge the performance
gap between the current state-of-the-art History and the ideal but
unrealistic Oracle page scheduler. We build a new page scheduler
– Kleio – and we answer important questions concerning how to
achieve an effective solution (i.e., one that maximizes the extent
to which the performance gap is bridged), and a practical solution
(i.e., one that can be realized while expending only a controlled or
limited amount of resources on the typically compute-intensive
machine intelligence processing tasks).

The specific contributions of this paper are the following:
• Gap in current solutions: We show the significant room for ap-
plication performance improvement that is feasible in hybrid
memory systems via clever data placement. This is due to the
fact that predominantly used solutions, which look at recent
memory access activity, are not computationally robust so as to
capture complex page access patterns (Section 2).

• MI-based page scheduling: We identify Recurrent Neural Net-
works (RNNs) as an effective and practical technique for the
page scheduling problem (Section 3). We show that RNN train-
ing on a per application page granularity is highly accurate and
leads to significant performance improvements even when ap-
plied to a subset of pages (Section 4). While not exhaustively
exploring all possible DNN algorithms, we present insights on
the important tradeoffs that must be considered when select-
ing an MI approach: its computational and space complexity
and its applicability for the feature set which describes the page
scheduling problem.

• Kleio: We designKleio1, a practical, hybrid MI-based page sched-
uler. Kleio is hybrid because it combines existing history-based
page scheduling, when such more lightweight methods are effec-
tive, with RNN-based machine intelligence, when history-based
methods fail. Kleio is practical because it incorporates a new
method for identifying pages where MI-based scheduling leads
to most significant performance boost and prioritizing the use
of system resources for these pages (Section 5).

• Performance improvements: Using a range of workloads from
popular suites, we show that Kleio can bridge on average 80%
of the performance gap, that exists between the history-based
page scheduling and oracular knowledge of the access pattern
of a small set of cleverly selected application pages (Sections 6
and 7).

1The name is inspired by ancient Greek mythology, where Kleio is the muse of history,
daughter of Mnemosyne, goddess of memory.
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Oracle Page Scheduler across variable DRAM/NVM capacity ratios
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(a) The Oracle page scheduler periodically migrates application pages such that DRAM hosts the pages with the highest access counts in the
current scheduling epoch until capacity is full.
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History Page Scheduler across variable DRAM/NVM capacity ratios
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(b) The History page scheduler periodically migrates application pages such that DRAM hosts the pages with the highest access counts in the
previous scheduling epoch until capacity is full.

Figure 2: Application performance for decreasing ratio of DRAM to NVM and fixed overall capacity to be the per application
memory footprint. Section 6 includes detailed explanation of the experimental methodology.

2 MOTIVATION
We first provide experimental results to illustrate the scope of the
problem addressed with Kleio. The goal is to illustrate the impor-
tance of page scheduling for different applications and the gap that
exists with current history-based approaches. We use the appli-
cations summarized in Table 1, the experimental methodology is
described in detail in Section 6, and the scheduler description is
introduced in Section 1 as well as summarized in the caption of
Figure 2.

Figure 2a shows the performance achieved by an Oracle page
scheduler across decreasing availability of DRAM capacity. Even
in the case of a-priori knowledge of the workload’s access pattern,
the restricted DRAM capacity can severely impact performance,
especially when it is available only in smaller amounts (e.g., 1/256
DRAM/NVM ratio). We also validate the observation [10] that the
use of the minimum necessary DRAM capacity that is able to host
the hot pages across the scheduling epochs (i.e., 1/8 in our case) can
provide almost the same performance as if having infinite DRAM
capacity (i.e., all-in-DRAM).

Figure 2b shows how the placement methodology of the current
state-of-the-art History page scheduler can reduce performance
up to 55% (in the case of lulesh) and 13% on average. This is due to

the fact that the history-based scheduler is built on the observation
that applications preserve their page access pattern for certain
time intervals, which may span across multiple scheduling epochs.
Although this leads to good page placement decisions during such
epochs, it fails to capture changes in the workload’s memory access
behavior. For example, there are times where the subset of hot pages
may be completely disjoint between consecutive scheduling epochs,
as the application transitioned into computation that involves data
allocated in different memory areas. In this case, the performance
impact is significant and makes a case for more intelligent data
management using clever extrapolation of the past memory access
pattern and not just the immediately observed behavior.

Takeaways
We observed that even though restricted DRAM capacity can poten-
tially reduce application performance, the current state-of-the-art
page scheduling methodology is not intelligent enough to capture
all the necessary past information needed for predicting future
memory access behavior, which will allow for timely data place-
ment in DRAM. To address this, we choose to explore machine
intelligence techniques given their ability to learn complex combi-
nations of multi-featured information.



Application Suite Domain
pages
(4 KB)

Sched.
Epochs

Lulesh CORAL Hydrodynamics 847,252 206
XSBench CORAL Monte Carlo 136,098 856

blackscholes PARSEC Finance 8,033 302
bodytrack PARSEC Comp. Vision 13,259 389
canneal PARSEC Engineering 56,974 398
dedup PARSEC Storage 131,259 657

fluidanimate PARSEC Animation 54,286 333
raytrace PARSEC Visualization 22,890 347
swaptions PARSEC Finance 12,633 491
BackProp Rodinia Pattern 35,083 117

BFS Rodinia Graph 27,396 26
BPT Rodinia Filesystems 142,923 485

Kmeans Rodinia Data Mining 70,783 87
Knn Rodinia Data Classifier 84,691 118

Leukocyte Rodinia Medical 56,580 180
Cobra Windows Video Transcode 83,720 168

HybridEncoder Windows Video Transcode 73,787 178
Luxmark Windows Image Creation 53,491 108

Table 1: Workloads used for evaluation. Number of pages
× 4 KiloBytes will be the total application memory foot-
print. Scheduling epochs is the number of times that the
page scheduler was periodically invoked within the appli-
cation runtime, so as to reposition pages across the hybrid
memory subsystem.

We aim to achieve two important goals:
1. Bridge the performance gap between the Oracle and History

page schedulers.
2. Deliver low training and inference times by reducing the input

problem space. This would allow the approach to be possibly
integrated in an online solution.

In doing so, we contribute answers to the following questions:
1. Which machine intelligence technique to use (Section 3)?
2. How should we formalize the data input to the machine intelli-

gence algorithm, so that it adheres to the purpose of predicting
page access behavior to be used by a page scheduler (Section 4)?

3. How can we reduce the input problem space? How many are
the pages whose timely placement in DRAM significantly boosts
performance, while the History scheduler fails to properly man-
age them? Do all pages actually need machine intelligence based
management (Section 5)?

3 MACHINE INTELLIGENCE BACKGROUND
In this section, we explore the machine intelligence techniques that
seem to be a good fit when designing an application page scheduler
for data management over hybrid memory systems. Our goal is to
design a page scheduler that can learn more cleverly through past
information and make more intelligent page placement decisions
across the scheduling epochs, compared to the existing History page
scheduler, as depicted in Figure 1 and described in Sections 1, 2.

3.1 Reinforcement Learning
First, we explored deep reinforcement learning [13, 22, 23], a ma-
chine intelligence technique that enables an agent to learn through
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Figure 3: Example layout of a Recurrent Neural Network
(RNN), using Long Short Term Memory (LSTM) neurons.

taking actions in a defined environment, in order to maximize a
reward entity via the received feedback.

In more detail, the page scheduler (agent) periodically interrupts
the execution of the application to take an action, that is to mi-
grate pages across the memory components. Then, the application
resumes execution (environment) and during the next scheduling
epoch (interrupt) the page scheduler receives its reward, that is
the DRAM hit rate with the most recent page placement (state). In
this way, the page scheduler learns the dynamic data layout that
optimizes application performance across its runtime.

Why it is not a good fit. Although the approach of reinforcement
learning seems to be a great fit into the problem description of a
hybrid memory page scheduler, it cannot be realistically adapted.
This is due to the prohibitively large amount of possible actions
the agent (page scheduler) can take. More specifically, a single
action of a page scheduler involves taking a placement decision
for each individual application page. For example, if there are two
memory components and N pages, then there are 2N possible
placements, thus actions to choose from. Considering Table 1, that
summarizes the number of pages across our pool of applications,
N can be in the order of hundred thousands. In conclusion, the
problem space becomes not only exponential, but also depends on
the number of application pages, which made us drop the approach
of reinforcement learning for the context of our problem.

3.2 Recurrent Neural Networks
Another machine intelligence approach, which seemed appropriate
for the purpose of the hybrid memory page scheduler, is Recurrent
Neural Networks (RNNs). Different from reinforcement learning,
where interaction with an environment facilitates learning, RNNs
are able to find long-term dependencies in a sequence of data points
and make predictions about future data behavior.

In the context of the page scheduler, these data points can be the
sequence of pages accessed throughout an application execution
time interval. The page scheduler can deploy an RNN in order to
learn the page access pattern and make predictions about future
page accesses. Using those predictions the page scheduler can de-
termine which pages should be prioritized for allocation in the



most appropriate memory component. For example, future highly
accessed pages should be allocated in the lowest access latency
memory technology. We choose to adapt this machine intelligence
technique, since it has already been used to solve similar problems,
like hardware memory prefetching [12]. In contrast with reinforce-
ment learning, where the problem space was growing exponentially
to the number of application pages, in the case of RNNs it grows
linearly with the number of pages. Furthermore, in Section 4 we
show how it can be significantly reduced for the purpose of fast
and efficient learning.

RNN Functionality. Next, we present the internal functionality
of RNNs on a very high level. Currently, a widely used type of RNN
is the Long Short Term Memory (LSTM) Network, that given a
sequence of data points from time t − h up to time t , can make a
value prediction for time t + 1, where h is the length of retained
history. For example, if the sequence represents theweather forecast
of a city from April to November, the LSTM can make a weather
prediction for December. In more detail, a single LSTM neuron
takes the input sequence and converts it into an internal state
ht , via a non-linear combination of the weights and biases of its
internal ‘gates’. There are the ‘input’, ‘output’ and ‘forget’ gates that
dictatewhat information gets filtered from the input and propagated
towards the output. In this way, a single LSTM neuron is able to
capture past data information into an internal state representation
and make predictions about future data points.

An RNN can be constructed via the combination of multiple
LSTM neurons on a single layer, stacked LSTM layers together with
regular Dense layers, as depicted in Figure 3. The input sequence
is split into subsequences of history length h, in a rolling window
fashion. During a training epoch, all input subsequences are fed
into the network, which then makes a single value prediction for
each subsequence. The difference between the predicted and actual
values is captured through the loss function and back-propagated
into the network, where its weights and biases are getting updated
according to the learning rate. Training can terminate when there
is no reduction in the loss, thus the network cannot make any
predictions closer to the actual value. In Section 6 we describe the
network layout, hyper-parameter values and further fine-tuning
techniques that will facilitate learning for the provided input data.

4 NEURAL NETWORK INPUT
When using neural networks, an important step is choosing the
features which describe the problem and are to be used as inputs.
In this section, we discuss the representation of the data sequence
related to memory access behaviors to be fed into the RNN and
the interpretation of the predicted value, as this is crucial for the
training time and accuracy of the generated model. We further
explore possible ways to reduce the input problem space and enable
faster and more resource-efficient learning.

Input Data. The data we have available for each application is a
memory access trace, as depicted in Figure 4. More specifically, it
is the sequence of the page accesses that were serviced from main
memory and not the processor’s hardware caches, as they happened
throughout the application run time. In Section 6 we describe in

Figure 4: Example memory access trace, from the PARSEC
suite. For every consecutive memory access (x-axis) we plot
the page accessed (y-axis). The vertical gray lines correspond
to the scheduling epoch time intervals.

detail the way we acquire the trace and the exact information it
contains.

Learning Objective. The aim of the RNN training is to be able to
make predictions with respect to the number of future memory
accesses, so as to aggregate the accesses on an application page
granularity and then determine an ordering of heavily accessed
pages. These predictions need to happen periodically, when the
page scheduler is invoked, so that the appropriate page migrations
are determined and executed. That is future hot pages need to be
migrated to the memory technology component with lowest access
latency.

Training Time. One of our main considerations is to enable fast
learning via reduced training times and resource utilization opti-
mized techniques. The duration of training models can be critical
when considering use of machine intelligence in systems solutions,
which to be practical, must operate within limited time and compu-
tational resource budgets. Undoubtedly the use of computationally
robust technologies, like GPUs, TPUs, custom RNN accelerators,
can accelerate learning. However, in this paper our primary goal is
to explore ways to enable faster learning via the training method-
ology, that can further be boosted via appropriate hardware.

4.1 Across Pages Prediction
The most intuitive way to learn from a memory access trace is to
feed it ‘as-is’ into the RNN, following the x-axis in Figure 4. In
this case, the RNN looks into a subsequence of page accesses and
predicts the page to be accessed next. Such an RNN use case is
used by Hashemi et al. [12], for the purpose of prefetching future
memory address accesses.

This approach has several limitations:
1. Large training time. To begin with, the input trace usually
contains millions of memory accesses, especially at the data input
scales of High Performance Computing applications. This makes
training time prohibitively large, in the order of couple days, at
least when using the hardware setup described in Section 6.



2. Low prediction accuracy. Furthermore, when the output value
space is significantly large (number of different pages), the RNN
prediction accuracy tends to be low. Neural networks work better
with normalized inputs (e.g., between 0 and 1 [12]). However, when
normalizing hundred thousand values in such a way (total number
of pages according to Table 1), there will be vast information loss.
This is the reason why Hashemi et al. [12], choose to reduce the
output value space (number of different memory addresses), by dis-
cretizing it into frequently appearing values (classes), and training
different RNNs across clusters of the address space covered by the
application. Most importantly, they accept top-k predictions at a
time, so as to increase the chances of a correct prediction. Although
this is acceptable for the purpose of prefetching, it is not the case
for a page placement decision, where a single prediction is needed,
in order to accumulate the number of per page accesses.
3. Not an exact fit for the page scheduler description. As de-
scribed in Section 1, the page scheduler operates periodically, ag-
gregating the per page access counts during an application runtime
interval referred to as scheduling epoch. Then the scheduler will
determine the appropriate page ordering and issue the necessary
migrations across the memory components. However, the number
of memory accesses differs across the scheduling epochs, as it is
visible by the vertical lines in Figure 4, where only 10% of the total
memory accesses happened during the first half of the scheduling
epochs. This is subject to the code executed during that time with
respect to its computation to data access ratio and the technology
parameters of the processor and memory regarding the time it takes
to execute an operation, load data, etc. Throughout our application
pool, we observe that just 10% of the total memory accesses happen,
on average, throughout the first 37% of the scheduling epochs. Thus,
there is no way to know before-hand how many accesses are going
to happen in the next scheduling epoch, that is how far in the future
the RNN should make predictions for (unless we train a different
RNN for that purpose!).

In conclusion, we reject the idea to treat the input access trace
as-is, given the restrictions described above. Next, we will see how
we can extract the necessary information from the trace, so as to
enable faster and accurate learning, that is also more suitable for
the functionality of a page scheduler.

4.2 Per Page Prediction
Instead of predictingwhich page is going to be accessed next (across
pages prediction), we flip the problem and explore the case of pre-
dicting when a page is going to be accessed next (per page predic-
tion). So instead of predicting the y-value following the x-axis, we
take each y-value (page) and predict the sum of accesses across
the scheduling epoch intervals on the x-axis. Thus, we propose
training individual RNNs for every single application page. So, we
feed into the per page RNN the sequence of access counts across
the scheduling epochs and predict the number of accesses that the
page will receive in the next scheduling epoch. In contrast with the
prediction across page, the per page prediction:
1. Fits the page scheduler description. The above transforma-
tion of the input access trace fits exactly the functionality of the
page scheduler, which will aggregate the page access counts on
a scheduling epoch interval, so as to order frequently accessed

Kleio Page Scheduler
Page

Application

Page

Page

Page

Page

Page

Page

Page Selector

RNN History

Hot Page Ordering

DRAM NVM

rest pageshot pages

Hybrid Memory System

important 
pages

rest pages

page access counts

Figure 5: Kleio is a hybridmemory page scheduler, that com-
bines the current state-of-the-art page placement methodol-
ogy together with machine intelligence based management
of the page subset, whose timely placement in the appro-
priate memory component is crucial for application perfor-
mance.

pages and appropriately migrate them across the hybrid memory
components.
2. Enables high prediction accuracy. Depending on the epoch
duration and hotness of the page, the maximum number of accesses
per epoch is in the order of hundreds, which is orders of magnitude
less than problem space that the prediction across pages needed
to capture, normalize and predict. Thus, this output value range is
more suitable for RNN training.
3. Allows for low training times. Having a different RNN model
per page, when the total number of pages can be in the order of hun-
dred thousands, is similar to having a single RNN model that makes
predictions across all these pages, as described earlier, since the in-
put problem size remains the same, as depicted in Figure 4. Similarly
to clustering techniques of the address space into memory regions
and focusing on the frequently appearing memory addresses, as
Hashemi et al. [12] did, there is scope to focus on the pages that are
critical to application performance, which will significantly reduce
the number of RNN models and overall training time, thus resource
consumption.

In Section 5 we describe in detail, the methodology of selecting
the most appropriate pages for training with respect to reaching a
desired level of application performance.

5 SOLUTION
We propose Kleio, a page scheduler for hybrid memory systems,
that leverages the existing state-of-the-art data management solu-
tions and optimizes application performance by delivering machine
intelligence based placement decisions for a cleverly selected page
subset.

Kleio Overview. Figure 5, summarizes Kleio’s internal function-
ality. Kleio takes the following actions periodically, that is on every
scheduling epoch:
1. Identifies the subset of application pages that are important to

performance, through its page selector component, described in
detail later on.
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benefits we would have by managing cleverly all pages.

2. Trains an individual RNN for each of the important pages, in or-
der to predict the page access counts for the following scheduling
epoch.

3. For the rest of the pages, Kleio assumes that they will preserve
their access counts in the following epoch, as the current state-
of-the-art History page scheduler does, as described in Section 1.

4. At this point, Kleio has accumulated the per page access counts
for the next scheduling epoch. It then orders the pages in de-
scending access frequency order, prioritizing DRAM allocation
for the hot pages, until capacity is full. This methodology is pre-
dominantly used for performance optimal data tiering in hybrid
memory systems [9, 11, 27].
Following the above steps, Kleio is able to bridge the performance

gap between the Oracle and History page schedulers, as described
in Section 1. Full evaluation of Kleio, with respect to the machine
intelligence accuracy and application performance optimization is
done is Section 7.

5.1 Page Selector
We first describe the page selector component in Kleio. Its design
is driven by the following observations regarding the importance
of correct page placement to application performance:
• There is only a certain subset of pages that needs more clever
datamanagement, thanwhat the existing history-based solutions
can provide. That subset is significantly small for limited DRAM
capacity.

• Pages that need machine intelligence based management, can be
ordered with respect to the performance impact of their place-
ment into the appropriate memory component. We define a
benefit metric that enables the page ordering, prioritizing pages
with high access counts and number of misplacements by the
History page scheduler.

• Intelligent management of the pages following the aforemen-
tioned ordering does not correspond to linear performance im-
provement. In contrast, intelligent placement for only (a small)
part of them can bring most of the performance benefits we
would get by applying intelligent placement across all applica-
tion pages.

We define a ‘misplacement’ of a page by the History scheduler,
when at the start of a scheduling epoch, a page was supposed to be
allocated in DRAM, but it was not, because of wrong hotness pre-
diction. Figure 6 depicts the percentage of application pages, which
are misplaced by the History page scheduler, at least during one
scheduling epoch, across reducing DRAM capacity. This signifies
the set of pages that need more clever management. In combination
with the actual per application page count summarized in Table 1
and the limited DRAM capacity, the number of such pages can be in
the order of hundreds. This drastically reduces the problem space
of RNN training.

However, even by reducing the number of such pages, there
still may not be enough resources or time to train per page RNN
models. Thus, there needs to be a priority ordering of these pages,
so as to cleverly manage those that can give the biggest application
performance boost, when timely placed into DRAM. For this reason,
we capture the importance of a page in the benefit that its correct
placement would provide to application performance. The benefit
increases with the hotness of a page, similarly to prioritizing fre-
quently accessed pages for DRAM allocations across the scheduling
epochs. However, we also need to take into account the number of
misplacements-by-the-history-scheduler each page received, as the
timely placement of a page in DRAM together with its hotness, will
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Figure 8: Kleio’s page selector component is able to identify
the pages whose machine intelligence based management
will bring the highest application performance improve-
ments, while enabling focused and practical RNN training.

boost performance. To this extent, we define the following benefit
factor for prioritizing the pages in need of RNN training.
Benefit = Number of accesses × Number of misplacements

Next, we capture the range of application performance boost
we would get, if we could manage part of the aforementioned mis-
placed pages with the Oracle page scheduler and the rest with the
History page scheduler, since it already places hot pages in DRAM
in time. This will set the upper limit of the performance boost we
can get with RNN training of the misplaced pages. Figure 7 captures
this performance improvement. When the Oracle scheduler man-
ages 0% of the misplaced pages, it is equivalent to all pages being
managed by the History scheduler, thus is the lowest bound of per-
formance. In contrast, when the Oracle scheduler manages 100% of
the misplaced pages, it is equivalent to the Oracle managing all the
application pages, since the rest of the pages were not misplaced by
the History scheduler. That sets the upper bound of performance
we can have on a per application basis. We observe a non-linear re-
lation between the set of pages and the performance enhancement.
This is due to the page ordering with respect to the defined benefit
factor, that is able to prioritize hot pages, whose timely DRAM
allocation guarantees significant performance improvement. For
example, in the case where the curve shows a distinct knee, the
pages after the knee, received far less accesses, thus their timely
DRAM placement will bring trivial benefit to the DRAM hit rate.
Kleio’s page selector component captures the above observations
and provides insight into the relation between the number of pages
that need RNN training together with a best case scenario of corre-
sponding application performance improvement. Figure 8 summa-
rizes the work flow of the page selector component.

6 METHODOLOGY
6.1 Applications
Table 1 summarizes the set of workloads we used to motivate and
evaluate Kleio, spanning across domains with representative com-
putation kernels and stressing different components of the sys-
tem (e.g., memory, CPU, GPU). We included workloads from the
CORAL [1] suite, the PARSEC [3] suite utilizing the simlarge input

sizes, and Rodinia [5], with the default input data sizes. Finally, we
also included few Windows desktop applications.

Concerning the memory footprint of these applications, Table 1
includes this information as a multiple of 4 KB pages, that gives a
range of couple hundred MBs. Such significant memory footprint
(e.g., relative to the cycle-level memory simulations) is necessary
for our analysis, so as to capture the use case where the data will
span across multiple main memory components, due to the limited
capacity of available DRAM in future hybrid memory systems.

Regarding the application runtime, it is again summarized in
Table 1, as a multiple of the scheduling epoch intervals, when the
page scheduler is periodically triggered throughout application ex-
ecution. Our applications serve a variety of short and long running
executions. Due to the difference in the trace collection methodol-
ogy, for the CORAL workloads the scheduling epoch interval is 1
second, whereas for the rest is 0.01 seconds.

6.2 Memory Access Trace Collection
For each application we collect detailed traces of the data accesses
that missed the last level of processor hardware caches and resulted
in main memory accesses. For the CORAL workloads we used
the Instruction Based Sampling (IBS) that is available on AMD’s
processors. This mechanism samples every Nth micro-operation,
that goes through the processor’s pipeline, out of which we filter
the loads and stores. For the rest of the workloads, we collected
unsampled traces for memory accesses that miss the last level cache
on a system with an AMD A10-5800K APU clocked at 3.8GHz and
16GB memory. The information included for each individual access
is a timestamp, the physical and virtual memory address, the CPU
core ID, the application thread ID, whether the access was a load or
a store and a hit or miss. For the purpose of our analysis, we extract
the 4 KB virtual page ID, that corresponds to the virtual memory
address accessed and we group memory accesses into scheduling
epoch intervals according to the timestamp, as depicted in Figure 4.

6.3 Hybrid Memory System Simulation
We simulate a hybrid memory system that contains a fast mem-
ory component (i.e., DRAM) and one with lower access latency
(i.e., NVM). Both memory technologies serve as flat main memory,
as they are part of a continuous physical memory address space.
Table 2 summarizes the technology parameters of the simulated
memory types. The capacity of the memory system is assumed to
be the application’s memory footprint. For example, when we refer
to a DRAM/NVM capacity ratio of 1/16, we mean that DRAM will
have space to accommodate 1/16 of the application pages and NVM
will service the rest.

Apart from gathering the DRAM hit rate as an application perfor-
mance metric, we also use the analytical model used by Meswani et
al. [20] to extrapolate the application runtime, based on the number
of accesses that are serviced from DRAM and NVM appropriately.
In the case of the CORAL workloads, the number of accesses is
properly adjusted based on the sampling rate. The model uses the
Leading Loads method, which splits the application runtime into
the time to perform computations and the time to satisfy memory
requests, via the use of hardware performance counters. Regarding
the time to service a memory request, the method maps it to the



Technology R/W BW (GB/s) Seq. & Rand. R/W Latency (ns)
DRAM 19.2/19.2 8/8 & 50/50
NVM 10.24/1.024 8/8 & 100/1000

Table 2: Technology parameters used in the simulated hy-
brid memory system, differentiating for Reads (R) and
Writes (W) and sequential versus random accesses.

time spent servicing the leading (first out of many) load request
that misses the last level hardware cache. This load time depends
on the memory technology that serviced the request (e.g., DRAM
versus NVM), whose differences are summarized in Table 2. This
gives us a worst case performance estimate, since it does not take
into account actions that reduce latency, such as parallel compu-
tation or prefetching. Also, we assume dedicated DMA engines
that allow seamless page migration, which is overlapped with the
computation, as explored in [14, 19].

6.4 Neural Network Details

Neural Network Layout. Figure 3 gives a visual representation
of the RNN we deployed, consisting of LSTM neurons. The network
consists of two stacked RNN layers with 128 LSTM neurons each,
followed by a Dense Layer. The history length is 16, thus the input
data series is split in sequences of length 16, on a rolling window
fashion, while 70% of them are used as a training dataset and 30% of
them for validation. The neural network tries to minimize themean
squared error (loss) between the predicted and actual values, using
the Adam [16] optimizer on a learning rate of 0.001. The model
training stops, if the loss for the validation dataset is not reduced
for 20 consecutive training epochs. The duration and accuracy of
the trained models is reported in Section 7.
Data Manipulation. As described in Section 4.2, the RNN input
corresponds to a sequence of per page access counts during consecu-
tive scheduling epochs, while the output is the predicted number of
accesses the page will receive during the next epoch. The predicted
number will then be used by the page scheduler to determine the
hotness order across all pages. Thus, there is room for the prediction
to be slightly different than the actual number of accesses, as long
as it will not influence the hotness order of the page, and therefore
its placement decision, on the particular scheduling epoch.

Therefore, we normalize the input sequences between 0 and
1, since RNNs work better in this case as observed by Hashemi
et al. [12] and then denormalize the data for the final prediction.
Different from [12], there is no need for us to make predictions over
distinct integers, treating the prediction problem as classification.
Our experiments with the classification approach, highlighted the
possibility of misprediction with a great margin from the actual
value and gave reasoning as to why Hashemi et al. [12] chose to
consider top-k predictions at a time. Although this approach works
great with the prefetching logic, where more data can be prefetched
even if they do not end up being accessed, this is not necessary for
the purpose of our predictions.
It is important to observe that, even though the input data (memory
access trace) is the same between this work and [12], the prediction
use case transforms the way they should be manipulated for RNN
training and the accepted level of prediction accuracy.

Implementation. We use the Keras [6] high level API to deploy
the described RNN layout, using the existing implementations for
the LSTM neurons, the network layers connectivity, the Adam op-
timizer and model training, applying any default hyper-parameter
values if not explicitly mentioned above. The backend RNN execu-
tion engine is Tensorflow [2].
Hardware Testbed.We conduct experiments using an AMD ma-
chine with 512 GB memory and 64 Opteron™ 6370P CPU cores of
2 GHz each. CPUs have been used to accelerate RNN-based deep
learning models [32]. Kleio speeds up the training by intelligently
selecting to train the application pages that will bring actual per-
formance benefits. Instead, a more naive approach would rely on
accelerators and rack-scale size machines in order to accommodate
RNNs for all pages, wasting resources for training models whose
predictions have trivial performance impact or can be achieved by
simple history-based policies.

7 EVALUATION
In Section 5.1 and in particular in Figure 7, we showed the trend of
performance improvements Kleio can provide, assuming oracular
knowledge of the access counts of the pages that are in need of
machine intelligence based placement. In this section, we evalu-
ate Kleio with respect to the actual application performance im-
provements it can provide. We report how close to the Oracle page
scheduler Kleio can perform, when managing the pages that are
misplaced by the History page scheduler. We also summarize the
accuracy of the RNN predictions and the RNN training overheads.
Together with the achieved performance, these make a case for
Kleio’s practicality.

7.1 Application Performance
First, we evaluate the accuracy of Kleio’s RNN training with re-
spect to the corresponding application performance improvements,
which is what Kleio promises to deliver. As a reminder, Kleio iden-
tifies the pages that are misplaced by the History page scheduler
and applies RNN training in order to get predictions of their per
epoch access counts and determine the global page hotness or-
der for prioritizing DRAM allocations. If the RNN predictions are
extremely accurate, then it would be equivalent to having an Or-
acle page scheduler manage the misplaced pages. To this extent,
Figure 9a depicts the performance that Kleio can achieve when ap-
plying RNN training to 100 pages in the order defined by its page
selector component, for a given DRAM/NVM capacity ratio. We fix
DRAM/NVM=1/32 for the CORALworkloads and DRAM/NVM=1/8
for the rest, which is the capacity ratio for which the clever man-
agement of even a small number of pages, can bring significant
performance improvements (Figure 7). Performance is normalized
between 0%, when all pages are managed by History page scheduler
and 100%, when the selected pages are managed by Oracle and the
rest by History. In this way, we can understand the degree to which
the RNN predictions are sufficiently accurate, so as to provide all
the possible performance improvement.

We observe that in most cases, the RNN predictions are suf-
ficiently accurate to bring 80% of the possible performance im-
provement, on average and more than 95% for half of the appli-
cations that we considered. Unfortunately, there are cases such



as bodytrack and raytrace, where less than 50% of the possible
speedup is achieved, in which case more pages need to be trained
so as to further provide significant speedup.

Overall, we prove that the accuracy of the RNN predictions is
such that it can deliver application performance similar to what
would be possible with oracular knowledge of the access frequency.
Kleio’s page selector is useful, so as to determine the number of
pages that is necessary to train in order to observe significant
performance improvements.

7.2 Prediction Accuracy
We next present the actual prediction accuracy of the per page RNN
training. Figure 9b depicts the distribution of the Mean Absolute
Error (MAE), in boxplot representation, between the cumulative
per epoch page access counts and the actual values, across the
trained application pages. For example, mean MAE of 30, means
that the RNN predicted 30 more accesses on average per epoch per
page. On the same graph, we treat the decisions of the History page
scheduler also as predictions and plot the corresponding MAE. The
History page scheduler predicts that on the next scheduling epoch
a page will receive the same access counts as to those of the current
epoch.

As expected, the History prediction can be far from reality, as it
is common for a page to convert from being frequently accessed
to not being accessed at all on two consecutive epochs, thus the
prediction MAE can be significantly high. In contrast, the RNN
is able to make better predictions via the efficient LSTM learning,
although still they may seem not as accurate enough. However, as
explained in Section 6, even if the per epoch access count prediction
is not extremely accurate, as long as it does not affect the correct
global page hotness order and actual page placement, there will
be no application performance impact of the prediction. This is
highlighted in Figure 9a, where for example Luxmark has a mean
MAE of 50, though still achieves 85% of the possible performance
improvements.

Figure 9c, further strengthens the above statement by showing
the percentage reduction of page misplacements achieved by Kleio
for the selected trained pages, compared to the History page sched-
uler across all pages. Although, Kleio still misplaces the selected
pages on some scheduling epochs, the per page access count during
those epochs is not big enough to drastically impact the DRAM hit
rate. Thus, Kleio manages to reduce on average 85% of the selected
pages misplacements across the application lifetime.

7.3 Resource Utilization
As summarized in Section 6, RNN training goes on until there is
no further reduction of the loss over the validation data for a cer-
tain number of training epochs. The duration of the training is
primarily affected by the network layout itself, that is the hyper-
parameter values and the length together with the number of the
input sequences. Thus, the more training data the longer it takes
to learn. Since we perform training on a per application and per
page granularity, the number of input sequences is the number of
scheduling epochs, divided by the history length hyperparameter.
Looking back at Table 1, this number will be in the order of couple
hundreds, which enables fast training times.
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Figure 9: Evaluation of the application performance Kleio
can deliver.

More specifically, we report the following average metrics across
pages and across applications, for the given hardware testbed de-
scribed in Section 6. Training lasts on average for 120 training
epochs, that translates into a time duration of 2 hours per model,
when all models are trained at the same time, utilizing all system’s
resources. As far asmemory utilization during training is concerned,
the maximum observed per model was in the order of tens of GBs.
Finally, regarding the storage overheads of saving the models after
training, for the purpose of future inference and analysis, using the
Hierarchical Data Format (.hdf5) available from the Keras library,
it was less than 0.5 MB per model. Regarding the resource utiliza-
tion for the purpose of inference, it was trivial and the duration
instantaneous (3-4 seconds).



Putting all this information together, there is no doubt that the
hardware resource requirements of RNN training are significant,
especially as far as memory consumption is concerned. However,
training times in the order of couple hours are generally considered
to be low, for machine intelligence purposes. Furthermore, the
training time can be further reduced using more computationally
robust hardware. Either way, the user may be limited with respect
to how many per page models can train, given the available system
resources.
Kleio has provisioned for the case of limited hardware resources
through its page selector component, that provides the user with in-
formation regarding which pages to prioritize for RNN training and
the corresponding expected application performance improvements.

Reaching our initial Goals.
1. Kleio promises to bridge the performance gap between the Ora-

cle and History page schedulers, delivering on average 80% of
the theoretically possible performance when managing selected
pages, through the achieved RNN prediction accuracy.

2. Kleio delivers low training and inference times, via deploying
RNNmodels for cleverly selected application pages, whose timely
placement in DRAM significantly boosts performance. Kleio
shows that not all pages are in need of intelligent data manage-
ment, drastically reducing the input problem space.

8 RELATEDWORK
Kleio is a research artifact that utilizes neural networks in order to
enable learning of a workload’s memory access behavior for the
purpose of application page placement across a hybrid memory
system. In this section, we describe some of themachine intelligence
approaches used in the system’s community, focusing either on
other relevant problems or just other aspects of data management
in hybrid memory systems.

Regarding the usage of RNNs in the system software stack or
in hardware, there has already been a significant amount of re-
search. To begin with, RNNs have been proposed for the purpose
of memory prefetching by Hashemi et al. [12] as well as Zeng et
al. [31]. We have made multiple points in Sections 4 and 6 about
how differently we deploy RNNs and the importance of considering
the manipulation of the input data to be appropriate for the use
case of the trained model. Concerning other use cases of RNNs, the
authors of Desh [8] deploy them in order to predict node failures
in Supercomputing environments, so as to timely migrate com-
putation towards live nodes. In addition, RNNs can be utilized in
order to learn I/O block level access patterns, so as to optimize
the performance of flash storage device usage [4]. Furthermore,
RNNs could also be used over standard resource usage statistics
and kernel-level events, so as to predict future resource usage of
applications [26]. Finally, the authors of DeepCache [24] build a
content caching framework utilizing RNNs and in particular the
LSTM Encoder - Decoder model.

Regarding hybrid memory data management, we already refer
to a significant number of solutions without machine intelligence
in Section 1, such as [20, 27, 28]. As far as proposals with machine
intelligence are concerned, the authors of Tahoe [29] explore super-
vised machine learning techniques (multiple linear regression and

artificial neural networks), in order to predict application perfor-
mance baselines that will be part of the data object placement cost
across the hybrid memory components. Moreover, an alternative
approach to hybrid memory and distributed memory designs is to
leverage the knowledge about specific application algorithms to
direct data placement, rather than make the scheduling decisions
based on memory access trace data (thus treating the workloads as
a black box). Additionally, Wu et al. [30] demonstrate that algorithm
features, common numerical operations, and algorithm structures
can be leveraged to direct data placement for conjugate gradient,
fast Fourier transform, and LU decomposition for a matrix. They
also introduce a hardware customized DMA mechanism for bulk
data movement which is complimentary to this work. The k-means
NUMA Optimized Routine (knor) library [21] optimizes k-means
for modern NUMA architectures and minimizes synchronization
barriers.

With respect to similar system problems, Selecta [17] utilizes
latent factor collaborative filtering, in order to find the configuration
of cloud compute and storage resources that provides optimal cost-
to-performance trade-offs. Finally, Kraska et al. [18] demonstrate
the benefits of having machine intelligence based data indexing
and argue that the replacement of parts of the data management
stack with machine Intelligence based components will provide
significant performance benefits.

9 SUMMARY
We present Kleio, a page scheduler with machine intelligence for
applications that execute over hybrid memory systems. Kleio lever-
ages the current state-of-the-art scheduling methodology based
on the intuitive observations that frequently accessed pages need
to be placed in the fastest memory component and the fact that
such pages will remain frequently accessed for a period of time.
Going a step further than existing solutions, Kleio applies recurrent
neural network training to detect page access behavior, that cannot
be captured by the above observations, such as sudden changes
in the access frequency of a page. Furthermore, Kleio drastically
reduces the number of pages that need neural network training,
by detecting the ones whose clever placement will actually bene-
fit application performance. In this way, Kleio delivers a practical
machine intelligence solution and achieves performance improve-
ments close to the ones established by having a-priori knowledge
of the workload’s memory access pattern.
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