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ABSTRACT 
Reduction of resource consumption in data centers is 
becoming a growing concern for data center designers, 
operators and users. Accordingly, interest in the use of 
renewable energy to provide some portion of a data center’s 
overall energy usage is also growing. One key concern is that 
the amount of renewable energy necessary to satisfy a typical 
data center’s power consumption can lead to prohibitively 
high capital costs for the power generation and delivery 
infrastructure, particularly if on-site renewables are used. In 
this paper, we introduce a method to operate a data center with 
renewable energy that minimizes dependence on grid power 
while minimizing capital cost. We achieve this by integrating 
data center demand with the availability of resource supplies 
during operation. We discuss results from the deployment of 
our method in a production data center. 

KEY WORDS: data center, net-zero energy, renewable 
energy, sustainability 

INTRODUCTION 

In recent years, progress has been made in the development of 
techniques to reduce the environmental footprint of data 
centers. The first wave of such efforts started over a decade 
ago and was focused on optimizing the energy efficiency of 
different data center ‘silos’ (IT, cooling, power delivery). 
Examples of techniques that emerged from these efforts 
include the use of numerical modeling tools (like 
computational fluid dynamics) to minimize energy use by air-
conditioners [1][2][3][4]; arrangement of IT equipment in hot 
and cold aisles [5][6]; energy-efficient server platform designs 
and robust power control features [7]; and the idea of direct 
DC power to data centers [8]. A second generation of 
environmental solutions for data centers, which focused on 
efficiency gains via the integration of different silos across the 
data center, began to emerge about five years ago. Examples 
of solutions from this wave include metrics for measuring 
holistic energy efficiency [9][10]; dynamic thermal 
management of air-conditioners based on the workload at the 
computer racks [11][12][13][14]; aisle containment [15][16]; 
thermally-aware as well as energy-aware virtualized workload 
placement [17][18]; and integration of the data center with 
local (external) ambient conditions through economizers or 
on-site renewable sources such as wind and solar 
photovoltaics [19].  

All of the above techniques have enabled great strides in 
reducing the energy required by the data center. However, 

these existing solutions continue to treat supply-side 
constraints such as energy or cooling availability 
independently from IT workload constraints (or flexibilities) in 
load scheduling. As a result, data center utilization continues 
to be low on average, with many machines working at reduced 
utilization while still consuming significant power and cooling 
resources [20]. We believe an opportunity exists for a new 
generation of data center management solutions that are 
focused around the integration of energy and cooling sources 
(supply) with the IT workload (demand) across the data center 
lifecycle.  

In this paper, we introduce a ‘net-zero energy’ data center, 
designed and managed in a manner that uses on-site 
renewables to entirely offset the use of any non-renewable 
energy from the grid. Specifically, we describe how to 
combine the use of alternative energy sources with dynamic IT 
workload scheduling and integrated management techniques to 
improve overall data center utilization while allowing demand 
to be “shaped” according to resource availability. We illustrate 
implementation of such policy-based energy balancing 
through a working prototype that consumes zero net energy 
from the public utility grid while meeting all performance 
criteria and incurring minimal retrofit (capital infrastructure) 
expense.  

The remainder of this paper is organized as follows. First, we 
discuss our design and methodology for achieving data center 
scale net-zero energy operation. We then describe the 
experimental testbed used to validate the methodology. Third, 
we discuss results obtained from the testbed. We conclude 
with a discussion of our current results and next steps. 

DESIGN FOR NET-ZERO ENERGY  

Figure 1 is a diagram of a typical data center architecture. Data 
centers include three pieces of critical infrastructure: power 
delivery, cooling resource delivery and IT (includes servers, 
storage and networking). The power and cooling 
infrastructures comprise the supply-side portion of the data 
center ecosystem, with the power infrastructure supplying 
energy resources in the form of electricity (primarily) and gas, 
and the cooling infrastructure providing cooling resources 
(e.g., chilled water, cool air, etc.). As the primary consumer of 
power and cooling resources in the data center, the IT 
infrastructure comprises the demand-side portion of the 
ecosystem. Most data centers obtain all of their primary power 
from the public utility grid. Facilities built with a higher 
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degree of reliability will also have on-site power generation 
for backup use—normally in the form of diesel generator sets.  

 

Figure 1:  Typical Data Center Infrastructure 

Cooling resources are typically provided via mechanical 
refrigeration and, although we place them within the supply-
side portion of the ecosystem, can clearly have significant 
impact on the overall power demand of the data center. In 
order to reduce energy use and dependence on the grid 
simultaneously, a growing number of data centers today rely 
on micro-grids to both power and cool the data center [21]. A 
micro-grid is an interconnected grid that provides multiple 
means for generating and distributing a resource. It generally 
consists of one or more on-site generation means (e.g., 
photovoltaic panels, air-side economization) that can work in 
tandem with a more traditional source (e.g., public utility, 
mechanical refrigeration). Figure 2 is a block diagram that 
describes a supply-side micro-grid architecture for a data 
center. Energy storage can be added to further reduce grid-
dependence and may be necessary for “islanded” operation 
(i.e., off-grid operation). 

 
Figure 2:  Micro-grid Based Infrastructure 

In the remainder of this paper, we define a net-zero energy 
data center as one that consumes no net energy from a public 

utility grid over the lifecycle of the data center. Equation 1 
describes the net energy consumed by a data center. 

𝐸𝑁𝑒𝑡 = 𝐸𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 + 𝐸𝑂𝑝 − 𝐸𝑂𝑝,𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒  (1) 

In Eq. 1, EEmbedded describes the energy used to manufacture 
the data center. It includes the embedded energy in the 
materials that comprise the data center facility and the 
infrastructure contained therein. EOp refers to the total energy 
consumed during operation of the data center and includes 
consumption from the power, cooling and IT infrastructures. 
EOp, Renewable refers to the renewable energy generated on-site 
that is used to offset or augment the energy used by the grid. 
Our goal is to drive ENet to zero over the complete lifecycle of 
the data center. 

METHODOLOGY FOR NET-ZERO ENERGY 

There are two key considerations for achieving net-zero 
energy over a data center lifecycle according to Eq. 1. 
Lifecycle embedded energy must be low to reduce renewable 
offset requirements (and thereby reduce capital costs), and a 
management architecture must exist to balance data center 
runtime energy demand with supply-side constraints. This 
section will describe each of these areas. 

Embedded Energy and Lifecycle Design  

Figure 3: Comparison of embedded exergy consumption 
for a baseline bricks-and-mortar data center relative to a 
facility designed from a lifecycle perspective [30]. 

Life-cycle assessment (LCA) has been in practice for several 
decades [22][23]. It involves taking an end-to-end approach to 
assess the environmental impact from cradle-to-cradle, 
including the extraction of raw materials, manufacturing, 
transportation, operation, and disposal. Prior work has 
successfully developed lifecycle exergy consumption models 
for select IT systems [24] and has shown that optimizations 
based on lifecycle exergy consumption can map fairly well to 
optimizations based on other types of environmental criteria 
[25][26]. More recently, Shah et al. [27] presented an input-
output model to obtain a rapid but approximate estimate of the 
end-to-end environmental footprint of data centers. 
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Figure 4: Overall exergy consumption across the lifecycle 
for a baseline and a lifecycle-based design. 

In this paper, we propose using an LCA-based approach to 
dematerialize the data center as much as possible, by 
eliminating redundant materials and maximizing the reuse of 
materials. Doing so reduces the available energy required to 
build and maintain the data center thereby reducing Eembedded. 
As an example of the impacts from such a design philosophy, 
Figure 3 summarizes the results of a lifecycle-based data 
center design developed in prior work [28], which shows 
approximately 31% lower exergy consumption relative to 
typical bricks-and-mortar data centers. Disaggregating 
traditional IT systems so that common architectural functions 
such as memory and disk can be pooled together and shared 
allows for a reduced number of components, which in turn 
enables smaller printed circuit board sizes and corresponding 
reductions in the materials and energy used to manufacture the 
boards. Such disaggregated systems also allow for improved 
upcycling (i.e., reuse of components) at end-of-life. Similarly, 
eliminating sheet metal from the system packaging helps to 
reduce materials in the chassis. Interestingly, even though we 
did not explicitly focus on reducing operational exergy 
consumption, such a design also yielded benefits in runtime 
energy consumption (Figure 4). In particular, the IO hub and 
NIC components saw lower energy needs due to reduction in 
the number of components via dematerializing of systems. 
While the results summarized here are specific to the case 
study described in Meza et al. [28], such lifecycle-based 
optimization during the design stage is critical to meeting net-
zero operational targets at minimal costs. 

Operational Architecture 

Figure 5 describes our architecture for the operation of a net-
zero energy data center. There are four primary modules 
consisting of a) Prediction, b) Planning, c) Execution, and d) 
Verification and Reporting.  

 Figure 5:  Net-Zero Energy Data Center Architecture 

The Prediction module is comprised of a supply-side resource 
forecaster and a demand-side forecaster. The supply-side 
forecaster is used to predict the availability of resources within 
the power and cooling micro-grids. As an example, historical 
power traces, weather information and configuration 
information are fed into the Prediction module that then 
predicts future electricity generation capacity up to a day in 
advance. Similarly, external weather conditions (primarily 
temperature and humidity) and the cooling infrastructure 
configuration are used to predict the capacity of various 
cooling micro-grid components like air or water side 
economization [29]. Along with the supply-side predictor, a 
demand-side predictor uses historical workload traces to 
predict IT workload demand up to a day in advance. We 
categorize demand according to critical workloads that need to 
be executed upon arrival, and non-critical workloads that are 
delay tolerant (e.g., batch jobs, workload subject to spot 
pricing, etc.). 

The Planning module combines output from the Prediction 
module with a) data center infrastructure considerations like 
IT capacity and cooling infrastructure capacity, b) high level 
operational goals like achieving net-zero energy operation, and 
c) performance goals defined through Service Level 
Agreements (SLAs). Optimization algorithms are then used to 
generate a workload schedule and resource provisioning plan 
that meets the operational goals subject to resource availability 
and performance constraints. 

The Execution module is responsible for deploying the 
schedule developed in the Planning module. IT workload is 
managed via a Dynamic IT Provisioning component that 
manages workloads in real-time according to performance 
requirements, operational objectives and operational efficiency 
(including machine computational efficiency and cooling 
efficiency) [18]. It is tightly coupled to a Dynamic Cooling 
Provisioning component that manages the cooling micro-grid 
to optimize thermal performance and the operational 
efficiency of the data center cooling infrastructure [13]. 

A Verification and Reporting module is also included and is 
responsible for reporting results and insuring that the actual 
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execution is aligned with the plan. Any misalignment is 
addressed by updating the plan. 

PROTOTYPE IMPLEMENTATION 

The Net-Zero Energy architecture of Figure 5 is deployed in a 
production data center located in Palo Alto, CA. The data 
center is comprised of 85 racks of IT equipment and eight 
Computer Room Air Conditioning units (CRACs) of varying 
manufacture, as shown in Figure 6. The CRACs are provided 
chilled water via mechanical chillers. The supply temperature 
and blower speed of each CRAC are controlled via data 
obtained from a temperature sensor network distributed 
throughout the data center, as described in [13]. Each rack is 
outfitted with ten temperature sensors (five inlet, five exhaust) 
that report data every 15 seconds.  

 
Figure 6:  Data Center Layout 

The data center is also equipped with an air-side economizer. 
The economizer delivers outside air to the CRAC returns 
preferentially based on CRAC return air temperature. Control 
of the economizer is integrated into the control of the CRAC 
units [13]. Along with a cooling micro-grid, the data center 
contains a power micro-grid consisting of a 134 kW peak 
photovoltaic array that is grid-tied.  

 
Figure 7:  PV Generation Prediction 

Our prototype deployment includes the Prediction, Planning 
and Execution modules as described above. Our initial 
experiments were conducted with our supply-side resources 
scaled down to the size of our IT test bed. Our IT test bed 
consisted of four BL465c G7 servers, each with two 12-core 
1.8 Ghz processors and 64 GB of memory and a total of 48 
KVM virtual machines. Our IT demand consisted of critical 

and non-critical workloads. The critical demand was 
comprised of eight 3-tier Web applications (RUBiS—an e-
Bay-like online auction), and the non-critical demand was 
comprised of 24 batch jobs that included scientific computing, 
animation and image processing, and financial analysis 
applications. The PV, cooling data, and interactive workload 
traces are scaled to our IT testbed capacity. We next illustrate 
the net-zero energy workload flow described in Figure 5 by 
showing results obtained from each module of our prototype 
implementation. 

 
Figure 8:  Workload Prediction 

Figure 7 shows the predicted and actual values for the PV 
supply for September 10, 2011 scaled to our test bed. A k-
nearest neighbor algorithm was used along with historical data 
and weather forecasts to develop the prediction [31]. The 
average PV prediction errors (i.e., the average difference 
between actual and predicted values) typically range from 5% 
to 20% and are dependent upon the occurrence of similar 
weather conditions in the past and accuracy of the weather 
forecast. A similar curve, not shown, is developed for the 
prediction of cooling capacity for the air-side economizer. In 
addition to supply-side resource prediction, we need 
information about the expected demand in order to complete a 
planning schedule. Our demand prediction algorithms can 
accommodate interactive and batch workloads and are based 
partially on historical data [29]. Figure 8 shows the predicted 
and actual workload based on CPU demand. Average 
prediction error is around 20%. Results show that our planning 
module can accommodate these levels of supply and demand 
prediction accuracy [29].  

Once we have supply and demand side predictions, the 
Planning module develops a schedule for workload execution 
using workload demand shaping. Figure 9(a) shows the 
predicted power consumption of a workload demand prior to 
demand shaping over a 24 hour period. The figure shows 
power estimates from critical (interactive) and non-critical 
(batch) workloads, and for the cooling micro-grid. Note that 
the batch jobs are weighted towards the night-time when 
servers tend to be less utilized but were otherwise executed 
upon arrival. Figure 9(b) shows the expected power 
consumption according to a net-zero energy execution plan. 
The workload power consumption is displayed along with our 
predicted PV output. The total amount of workload is 
equivalent between Figure 9(a) and 9(b). Only the non-critical 
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workload is subject to demand shaping in Figure 9(b). The 
critical workload is executed upon arrival and in the absence 
of renewable power must utilize non-renewable resources 
(e.g., between 7pm and 7am). A renewable resource surplus 
(seen as the white space under the “renewable supply” curve 
in Figure 9(b)) in the plan accounts for the non-renewable use 
and enables achievement of a net-zero result. The reduction of 
workload execution at 3 PM seen in Figure 9(b) is a result of 
elevated external ambient temperatures that make cooling 
resources more expensive. Also, although embedded energy 
must be considered to achieve net-zero energy consumption 
across the data center lifecycle, we do not include it in this 
plan. As such, Figure 9(b) describes an operational net-zero 
energy plan. We note that a different ratio of non-critical to 
critical workload will result in a different plan and perhaps a 
different optimal supply-side mix. For example, if there are 
significantly more critical workloads than non-critical, then a 
mix of constant and intermittent renewable energy might be 
chosen to power the facility. 

The schedule is then submitted to the data center run time 
workload manager for executuion. Figure 10 shows the power 
trace of the plan vs. the actual power consumption of the IT 
and cooling infrastructure when applying the plan on our test 
bed. We note that the power consumption of the experiment 
lags the planned power consumption by a few minutes due to 
the time it takes to distribute or consolidate workloads when 
the number of physical servers change. We intend to 
incorporate this in the planning process as well as to speed up 
the boot process of physical machines and virutal machine 
migrations in our testbed in the future. 

RESULTS AND DISCUSSION 

To investigate the impact of supply-aware demand shaping on 

overall resource consumption and to highlight the benefits of 
our solution, we examine different workload schedules 
through the Prediction and Planning stages of our solution 
(i.e., unlike the previous section, where the schedule was 
implemented and performance actually measured in our 
testbed, the below discussion is based on simulation results). 
The PV, cooling and workload traces are from our data center 
as described in the Prototype Implementation Section. 
Interactive workloads are deemed critical and their resource 
demands must be met. Non-critical workloads (batch jobs) 
can be rescheduled as long as they finish before their 
deadlines. The plan period is 24-hours and the capacity 

planner creates a plan for the next 24-hours, including the 
hourly capacity allocation for each workload.  

Net-Zero Energy Case Study 

The goal is to achieve net-zero operation (i.e., total power 
consumption ≤ total renewable supply) while minimizing the 
energy exchange with the grid or storage energy. In other 
words, keep the dependence on grid low to reduce the 
recurring power cost or keep the dependency for energy 
storage low to reduce capital expense. In each case, the overall 
24 hour workload was identical and the non-critical workload 
was adjusted via demand-shaping according to the plan. Figure 
11 shows three different net-zero plans. Optimal—a net-zero 
energy plan that reshapes non-critical workloads to take full 
advantage of available renewable energy supply (Figure 
11(a)). This schedule is generated by our capacity planner by 
adding a net-zero constraint to our optimization problem. This 
schedule does more work during the day when renewable 
energy is available. Additionally, some renewable energy is 
reserved to offset non-renewable energy used at night for 
critical workloads. This excess renewable power is reserved at 
3pm when the outside air temperature peaks, thus minimizing 
the energy required for cooling. The other plans are Night—a 
“traditional” plan where non-critical workload is executed at 
night to ensure no interference with critical workloads occurs 
and to take advantage of idle machines (Figure 11(b)); Flat—a 
plan where the non-critical workload is averaged across the 
entire day (Figure 11(c)). Again, only non-critical demand is 
subject to demand shaping. In the Optimal plan, non-critical 
workloads are scheduled during the day time when PV power 
is available. Therefore, the IT and facility power demand 
matches the PV power generation, allowing the direct use of 
renewable energy. The Night plan schedules the non-critical 

Figure 9: Workload Demand Shaping 
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workloads at midnight and uses all available IT infrastructures 
to finish them as early as possible. In contrast to that the Flat 
plan schedules the non-critical workloads across the full day. 

Figure 11(d) compares the energy consumption of the three 
plans over the 24 hour period. All three plans achieve net-zero 
energy use. The combined renewable and non-renewable 
energy consumption is almost the same1, but by increasing the 
utilization of the renewable supply, the Optimal plan uses 83% 
less grid energy than the Night plan and 65% less grid energy 
than the Flat plan. As the Optimal plan reduces the 
dependence of grid energy significantly, the recurring cost of 
grid power decreases significantly for a grid-tied data center. 
If we assume that unused renewable energy needs to be stored 
(e.g., for a non-grid-tied data center), then the demand on 
energy storage is much lower for the Optimal plan than for the 
Night and Flat plans. As in the grid-tied plan, a larger portion 
of the renewable energy is used directly; although being net-
zero, Night and Flat require the storage of a large fraction of 
the generated PV power. By requiring less energy to be stored, 
the Optimal plan also helps to reduce the capital costs for a 
net-zero energy data center. Figure 11(e) compares the 
recurring grid power costs for a grid-tied data center and the 
energy storage costs for a non-grid-tied data center of each 
plan (normalized to the costs of the Optimal plan). Compared 
with the Night plan, the Optimal plan reduces the recurring 
grid power cost by 86% for the grid-tied data center and the 
energy storage cost by 87% for the non grid-tied data center. 
The Optimal plan reduces the recurring grid power and storage 
cost of the Flat plan by 88% and 79%, respectively. For non-
grid-tied data centers that need energy storage, assuming a 
cost of 400 $/kWh for energy storage, the savings on the 
energy storage expenditure for a data center with 1MW PV 
will be $1.4 million over the Night plan and $0.8 million over 
the Flat plan.  
                                                           
1 There is a very small difference because of different cooling 
power consumption. 

These results illustrate that sizing the supply side to achieve 
net-zero energy is not sufficient. As discussed in our use case, 
given the same PV installation, operating the data center 
differently can have a significant impact on the operational 
cost and/or the capacity of supply (e.g., energy storage size) 
that is required to achieve net-zero. Hence, optimizing 
workload management according to available supply is a 
critical step to achieve net-zero energy use while reducing 
overall environmental impact and cost of data centers . 

Impact of Workload Mixes and Prediction Errors 

Our solution improves energy efficiency and reduces grid 
power use by shaping non-critical workloads (e.g., batch jobs) 
at each timeslot. The more non-critical workloads a data center 
has, the more savings can be achieved. We study the savings 
of our solution over a traditional Night schedule that runs non-
critical workloads at night. The impact of workload mixes on 
the reduction of grid power use is shown in Figure 12. We can 
see from the figure that the savings improve as the percentage 
of non-critical workload increases. However, our solution can 
reduce grid power use significantly even when the non-critical 
workload is only 20% of the total workload.  

 
(a) Optimal                                             (b) Night                                                   (c) Flat 

 
(d) Energy Consumption                          (e) Cost 

Figure 11: Comparison of Different Net-Zero Plans  
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 Figure 12: Impact of Workload Mixes 

20% 30% 40% 50% 60% 70% 80%
40%

50%

60%

70%

80%

non-critical workload percentage

sa
vi

ng
s 

(r
ed

uc
tio

n 
of

 g
rid

 p
ow

er
 u

se



We also evaluate the impact of prediction errors on the 
benefits of our solution. Figure 13(a) shows the savings (i.e., 
percentage of grid power reduction) with different PV 
prediction errors. The figure shows that the savings slightly 
drop as the prediction errors increase, but our solution can still 
reduce grid power usage more than 50% with a prediction 
error of 50%. Finally, we evaluate the impact of workload 
demand prediction errors. The results shown in Figure 13(b) 
are similar to the PV prediction errors. If predictions don’t 
match the actual demand well, then our runtime controllers in 
the execution step will mitigate the errors in the plan via a 
feedback mechanism. Re-planning and adjustment will be 
done if the verification step indicates that an execution doesn’t 
meet its goal. Further, if more grid power is used because the 
actual PV generation is less than predicted, the workload 
planning will reserve renewable energy from the next day to 
offset the additional non-renewable used. 

CONCLUSION AND NEXT STEPS 

In this paper we introduced an architecture for operating a data 
center in a manner that consumes no net energy from the 
public utility grid. We demonstrated how the architecture was 
used by applying it to an operational data center test bed. We 
then compared a net-zero energy solution with other common 
workload scheduling algorithms and quantified energy and 
cost savings.  

Although our results are very encouraging, additional research 
is required to meet the overall goal of achieving net-zero 
energy over a data center’s lifecycle. Future work will involve 
adding embedded energy cost to our architecture and scaling 
out our solution. We are also actively investigating how to co-
locate critical and non-critical workloads simultaneously on a 
minimal set of IT equipment. This is an important next step in 
achieving a cost effective net-zero energy data center. 
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