
Write-Aware Management of NVM-based Memory
Extensions

Amro Awad
North Carolina State

University
Raleigh, NC USA

ajawad@ncsu.edu

Sergey Blagodurov
Advanced Micro Devices, Inc.

Bellevue, WA USA
sergey.blagodurov@amd.com

Yan Solihin
North Carolina State

University
Raleigh, NC USA

solihin@ncsu.edu

ABSTRACT
Emerging Non-Volatile Memory (NVM) technologies, such
as 3D XPoint, are expected to be in production as early as
2016. Emerging NVMs are very attractive for several rea-
sons. First, they are non-volatile and hence incur no refresh
power. Second, they are dense and promising for scaling
down further. Finally, they are fast and have latencies com-
parable to DRAM. On the other side, using emerging NVMs
as direct replacement for DRAM as the main memory is chal-
lenging. Compared to DRAM, emerging NVMs can endure
a very limited number of writes per cell. Furthermore, their
write latency is typically much slower and more energy con-
suming than DRAM, e.g., Phase Change Memory (PCM)
writes are multiple of times slower than that of DRAM. An
important use case for emerging NVMs is using them as fast
memory extensions. Memory extensions are hidden from
programmers and managed by the Operating System (OS).
Any access to pages held in the memory extension will cause
a page fault. Later, the memory manager moves the fault-
ing page to DRAM and maps the page. While similar in
concept to the swap file, memory extensions bypass the file
system. Furthermore, memory extensions are dedicated for
being used as memory and hence avoid contention with the
file system.

In this paper, we emulate an NVM-based memory exten-
sion and study its impact on performance on a real system.
We also study how to improve its performance using OS-
level prefetching. We show the importance of having the
system software and the NVM controller work in concert for
reducing the number of writes. Our best scheme where the
system software and the NVM controller work in concert
could reduce the number of writes to only 5% of the original
baseline (increasing its lifetime by 20×).

CCS Concepts
•Computer systems organization → Heterogeneous
(hybrid) systems;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-June 03, 2016, Istanbul, Turkey
c© 2016 ACM. ISBN 978-1-4503-4361-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926284

Keywords
NVM Memory Extensions; PCM; System Software

1. INTRODUCTION
With the increasing pressure to deploy large main mem-

ories, the traditional use of DRAM as the only component
of the main memory is increasingly becoming less attrac-
tive, for several reasons. First, the need to refresh volatile
DRAM cells incurs large power consumption, which limits
the amount of DRAM we can deploy in the same package.
Second, scaling down DRAM cell size becomes difficult as
the charge in DRAM cell capacitor needs to be kept constant
to meet retention time requirements [13]. Considering these
DRAM limitations, computer system designers are rightfully
considering emerging Non-Volatile Memories (NVMs) as re-
placements for DRAM. NVMs are non-volatile and require
no refresh power; some of them have a read latency com-
parable to DRAM, while at the same time they may scale
better than DRAM [12, 2, 28].

On the other side, there are still serious challenges in us-
ing NVMs as the main memory. Writing to NVM cells is
often slow, requires large power consumption, and has lim-
ited write endurance, e.g., 10-100 million writes in Phase
Change Memory (PCM) [15, 32, 12, 2, 28]. Accordingly,
future systems are expected to have heterogeneous memory
systems that consist of both DRAM and dense emerging
NVMs.

Emerging NVM products are expected to hit the market
in the next few years. As an example, 3D XPoint technology
has been announced by Intel and Micron with an expected
arrival time of 2016 [4]. Emerging NVMs are expected to
be offered in two major forms: Solid-State Drives (SSDs)
and Dual-In-Line-Memory Modules (DIMMs). As shown
in Figure 1, emerging NVM-based SSDs are expected to
be connected through very fast I/O interconnects, such as
the PCI Express or NVM Express [1]. The other form is
similar to the typical DRAM-based DIMMs, except that the
building block is NVM not DRAM.

Emerging NVM-based SSDs are expected to be optimized
for density more than NVM-based DIMMs, which are ex-
pected to be optimized more for performance. A key differ-
ence between both forms is the write granularity; DIMMs
are expected to be written in cache line granularity, which
is typically 64B. In contrast, SSDs are written in block gran-
ularity, which is typically 4KB.

Understanding how using these technologies can affect
performance and lifetime is very important. NVM technolo-
gies can be adopted in several ways. One way is to use the

Processor System

Memory Bus

DRAM

NVM

PCI Express

Fast NVM
SSD

Figure 1: Emerging NVMs as SSD vs. DIMM.

emerging NVMs as a direct replacement for DRAM main
memory. While this use case is attractive for low-frequency
processors, such as sensor processors, it can be challenging
for high-performance systems for several reasons. First, the
long write latency of NVM devices can degrade the whole
system performance, even for applications that do not re-
quire large memory capacities. Second, the lifetime of the
system can be intolerably shortened; NVMs can wear out
millions of times faster than DRAM [15, 12, 29]. Another
use case would be as a direct replacement for slower tech-
nologies in I/O storage systems. However, previous stud-
ies showed that the I/O software path, such as the block
layer and filesystem, can highly devalue the impact of such
technologies [6]. While both of the previous use cases are
expected to take place in future systems, in this paper we
look into a different use case. Specifically, we look into using
the emerging NVMs as fast memory extensions. Mem-
ory extensions can be thought of as a second-level memory,
where the OS ultimately chooses which pages are held in
DRAM and which are moved to the memory extension. Un-
like traditional swap systems, memory extensions bypass the
file system and are dedicated for extending the capacity of
the main memory system. Using emerging NVMs as mem-
ory extensions is attractive for several reasons. First, it is
simple to integrate efficiently in current systems; no modifi-
cations are required at the hardware-level. Second, memory
extensions are managed by the OS and hence their usage is
transparent to applications. Finally, unlike swap systems,
no interference with file system is required. In this paper,
we aim to answer the following questions. How can memory
extensions affect performance? How to maximize their per-
formance? Most importantly, how fast can they wear out,
and can we improve their lifetime?

Previous work explored extending the virtual memory us-
ing NAND-based Flash SSD drives [18]. Their work, FlashVM,
showed how using a dedicated SSD drives to extend mem-
ory is efficient and cheap. FlashVM isolates the SSD flash
drives being used for extending memory from the SSD flash
drives containing the file system. In this work, we take sim-
ilar direction but with much faster technology. We aim to
understand how emerging NVM technologies can impact the
performance.

In this paper, we emulate using NVMs as fast memory ex-
tensions and study their impact on the performance on a real
system. We discuss and evaluate several write-aware man-

agement policies, including a simple frequent value-based
compression. We show the importance of having the sys-
tem software and NVM controller work in concert for re-
ducing the number of writes. Our best scheme where the
system software and the NVM controller work in concert
could reduce the number of writes to only 5% of the original
baseline. Finally, we study the impact of OS-level prefetch-
ing and page replacement policy in reducing the number of
page faults.

• Our work is the first to study using emerging NVMs
as fast memory extensions through emulation on a real
system.

• We investigate the impact of several write-aware sys-
tem software management techniques and their rela-
tion with hardware techniques.

• We investigate OS-level page prefetching and its im-
pact on performance.

• We evaluate the impact of page replacement policy on
the number of page faults.

The rest of the paper is organized as follows. In Section 2,
we discuss how memory extensions work and their impact on
lifetime. We present related work in Section 3. We discuss
our emulation methodology and assumptions in Section 4.
In Section 5, we discuss and study our memory extension
emulation. We also propose and study several performance
optimizations and write reduction techniques. In Section 6,
we do a parameter sensitivity study. Finally, we conclude
our work in Section 7.

2. MEMORY EXTENSIONS
Memory extensions are memories dedicated for extending

memory capacity. At any instance of time, a memory page
can be either in the DRAM or the NVM. However, any ac-
cess to an NVM page will be handled by the OS and this
results in moving the page to DRAM.

The OS kernel can keep track of physical pages through a
linked list of pages’ metadata structures (e.g., struct page).
When a physical page is moved to the NVM, all the virtual
addresses that map to that physical page get unmapped, so
that any later access to that page will raise a page fault.
Note that there must be a mechanism to know the actual
NVM physical address the unmapped virtual address used
to map to, so the kernel can copy its content to a DRAM
page and then map the virtual address to the new page.
Since DRAM size is fixed, copying or moving a page from
the NVM to the DRAM also requires evicting a page from
the DRAM to the NVM. The actual page eviction to the
NVM does not need to occur in the critical path, but can be
simply buffered in a pre-allocated fixed-size eviction buffer in
DRAM. The eviction buffer is periodically flushed through
a kernel thread without affecting the critical path.

NVM technologies have different endurance levels. As an
example, the NAND-based Flash cells can wear out after a
few tens of thousands of write cycles. In contrast, PCM cells
can endure few millions to hundreds of millions of writes per
cell. Furthermore, PCM is orders of magnitude faster than
NAND-based flash. Such factors make emerging NVMs a
much stronger candidate for extending the memory.

Figure 2 shows a comparison between the expected life-
times for a system that uses PCM memory extension versus

0.1	

1	

10	

100	

1000	

10000	

MiniFE	 MiniAMR	 XSBench	 RSBench	 Lulesh	 SimpleMoC	

M
ax
im

um
	 L
ife

+m
e	
(m

on
th
s)
	

Applica+on	

Expected	 Life+me	 of	 Memory	 Extensions	

Flash	

PCM	

Figure 2: The expected lifetime of memory extensions (log scale).

Flash memory extension. For both memory extensions, we
assume the memory extension has 4x the DRAM capacity
(4GB DRAM and 16GB memory extension). We assume
PCM with 150ns/1500ns page read/write latency and en-
durance of 107 writes per cell. For NAND-Flash, we use
the model calibrated in [23], a 25 µs read/write latency per
page. We also assume 104 writes per cell, which is typical
for modern NAND-based Flash.

From Figure 2, we can observe that Flash-based mem-
ory extensions can wear out in less than a month for most
of the HPC workloads we tried. In contrast, PCM-based
memory extension can last for a few years for most of the
applications, however, the lifetime can be shortened further
in systems with other frequent write activities (e.g., check-
pointing in HPC systems). For large-scale HPC systems,
the write traffic can be multiple times higher, hence making
memory extensions less reliable. Accordingly, in this paper,
we focus on studying and improving both the lifetime and
performance of memory extensions.

3. RELATED WORK
In this section, we summarize the related work. We cate-

gorize the related work as following:

• Memory Extension: using a dedicated device for
solely extending the virtual memory has been proposed
by previous work [18]. FlashVM [18] extended the vir-
tual memory using NAND-based Flash SSDs. How-
ever, emerging NVMs are orders of magnitude faster
than Flash drives, which makes using them as mem-
ory extensions much more attractive. Furthermore,
emerging NVMs can endure many more writes than
Flash [4]. Accordingly, our work shows how extending
the virtual memory with emerging NVMs can affect
lifetime and endurance.

• Emerging NVMs as I/O Devices: recent studies
explored using emerging NVM devices, such as PCM,
as building blocks for storage systems. In [25], the au-
thors propose an optimized version from the state-of-
the-art I/O host controller interface, NVM Express [1].
The authors propose DC Express, an optimized pro-
tocol that is more suitable for emerging NVM devices.
Another work studied the performance bottlenecks and
possible optimizations when using fast NVM devices

over the standard NVM Express interface [6]. Our
work is different in that we explore emerging NVM
devices as main memory extensions.

• Emulating NVMs for Persistent Memory Al-
locations: previous work studied how an application
can allocate a range of memory pages that are backed
by a file in an NVM device [24]. Current Linux systems
already have a system call called mmap, which can
be used to back a specific range of virtual addresses by
a file. Our work is different in that we do not require
any modifications at the application-level, but all the
system memory pages are managed by the OS (i.e., any
page of the application heap can be located at NVM or
DRAM, and that is solely managed by the OS). Fur-
thermore, our design assumes no file system on the
NVM device, hence there is no need to create files
to hold application-specific pages. On the other side,
our work focuses on enhancing performance and leaves
out persistency, which can be handled by specific APIs
or kernel drivers, such as PMEM [5]. Another recent
work uses a commercial platform, PMEP, to emulate
how storage-sensitive workloads can have their perfor-
mance affected when replacing DRAM with emerging
NVMs [31]. Our work is different in that we evalu-
ate the use of emerging NVMs as memory extensions,
mainly for enhancing capacity rather than taking ad-
vantage of persistency. Furthermore, our work focuses
on HPC workloads with large memory footprints.

• NVMs as Part of the Main Memory: previous re-
search studies dealing with NVMs as part of the main
memory [17]. The main idea is to profile pages behav-
ior and use such information to guide the placement
of pages to be in NVM or DRAM. Unfortunately, such
profiling requires hardware support and modifications.
Our work aims to integrate emerging NVMs with the
least amount of required modifications to current sys-
tems. Our design uses emerging NVMs as natural ex-
tension for DRAM, where the DRAM can be thought
of as OS-managed page cache.

4. METHODOLOGY
In this section, we explain the emulation infrastructure we

use, our assumptions and the applications we run.

4.1 Emulation Infrastructure
Our emulation infrastructure is based on the PerMA NVRAM

emulator [24]. PerMA is used to emulate the performance of
persistent memory allocations for customizable NVM device
latency. The PerMA NVRAM emulator is implemented as a
Linux device driver that allows application execution at na-
tive speeds. If any application wants to allocate persistent
memory, it can simply use the mmap system call to map
specific range of virtual addresses to a file. Typically, this
is done by passing the starting address and the size of allo-
cation to the mmap system call. Any access to that virtual
address range causes a page fault that will be handled by
the PerMA driver.

As mentioned earlier, the typical use of PerMA [24] emu-
lator is to mmap a space from the file of the PerMA device
into the process address space by using the mmap system
call. However, using such technique is limited and insuffi-
cient for our study for several reasons. First, we need to
modify the applications code to modify every malloc and
replace it with mmap. Second, every malloc will cause an
mmap system call that is expensive. Third, managing the
allocated space through the malloc calls is now shifted to
the PerMA device, which deals with page granularity, un-
like typical malloc/free implementations. Finally, we also
need to have the shared libraries allocating memory from
the PerMA device, not only the malloc calls visible in the
source code. To overcome the previous issue, at the link-
ing time, we inter-position standard malloc with a simple
implementation of malloc/free and new/delete calls.

Initially, the first malloc/new mmaps a very large space
(e.g., 32GB) from the PerMA device into the process address
space. Later, any subsequent malloc/free calls will use that
space as if it is the heap of the process (i.e., they initially
see a free 32GB starting from the address returned from the
mmap occurring in the first malloc). All subsequent mal-
loc calls will be looking into free space within that 32GB
space, while free calls will free the allocated space from that
32GB space. In other words, the mmap’ed region is used
as the heap space. Accordingly, malloc/free are now allo-
cating regions from the space visible to the device and any
page faults are handled through the PerMA device driver.
We implement a simple first-fit malloc/free, with both co-
alescing at free and splitting allocations with large internal
fragmentation.

4.2 System Configuration
We run all of our experiments on an AMD APU A10-

7850K with 32GB main memory. We use Linux kernel ver-
sion 3.19.6 with Ubuntu distribution.

4.3 NVM Device Model
Similar to current SSD drives, writes are expected to be

hidden through several SSD optimizations, such as log-based
writing and buffering. Indeed, previous papers calibrated
read/write latencies of flash drives and found them to be
similar [24]. For NAND-Flash, we use the model calibrated
in [24], a 25 µs read/write latency per page. We study
the sensitivity for Flash write latency on Section 6. For
PCM, we use page read and page write latencies of 150ns
and 1500ns, respectively. We assume a NAND-flash en-
durance of 104 write cycles, and PCM endurance of 107

write cycles. Our conservative estimations are based on
projections from literature and recent announcements for
emerging NVM technologies [16, 12, 4, 29, 7, 15].

Current emerging NVM technologies, such as 3D Xpoint,
are expected to be deployed with 4x the capacity of DRAM
in future systems [8]. Accordingly, unless explicitly men-
tioned, we assume DRAM:NVM ratio to be 25%.

4.4 Applications
In this study, we focus on HPC workloads that are ex-

pected to run on large-scale systems with real demand for
memory capacity. Accordingly, we select several open-source
proxy applications from the U.S Department of Energy. The
selected applications were configured to run with large mem-
ory footprints (approximately 16GB). Table 1 presents a
summary of the used applications.

5. EVALUATION AND ANALYSIS
In this section, we propose and discuss several write reduc-

tion schemes and compare their impact on number of writes
and lifetime. Later, we study the impact of the DRAM to
NVM ratio on performance and hence understanding how
technologies with different densities can be used as memory
extensions in future systems.

5.1 Write-aware Memory Management
One of the main limitations of emerging NVMs is their

limited write endurance. For example, PCM cells can only
endure few millions of writes. Furthermore, writing to PCM
array consumes up to 43× the energy consumed by DRAM [11].
Accordingly, deploying such technologies as main memory
extension requires careful consideration for how many writes
they are exposed to. In this section, we study the impact of
system software implementations on the number of writes.
Later, we investigate the impact of using state-of-the-art
hardware techniques on write reductions and enhancing the
lifetime of NVM.

5.1.1 System Software
One important aspect to consider is the inclusion prop-

erty of memory extensions. The inclusion property deter-
mines if a page that is allocated in DRAM is required to
be allocated in the NVM as well. For example, the system
software can either copy the accessed page to the DRAM
and keep a copy at the NVM or simply move the page to
DRAM and free up the NVM copy.

We refer to keeping a copy of the page in the NVM as
inclusive memory extension. Inclusive systems are very
important in the context of NVM systems; many pages get
written a few times, and for the rest of the application, are
only read. As depicted by Figure 3, in inclusive systems,
when a page gets evicted from DRAM, the system software
checks if the page has been updated since the last time it
was brought from the NVM. If the page has not been up-
dated (clean), no write to the NVM is required, as shown
in Case 1. However, if the page has been updated (dirty),
the page should be written back to the NVM. Checking if
the page is dirty or not can be accomplished by checking the
page dirty bit which is set by the Memory Management Unit
(MMU) hardware. Most modern processor systems support

Application Description

Lulesh It represents a typical hydrocode. LULESH approximates the hydrodynamics equations discretely through
partitioning the spatial problem domain to a collection of volumetric elements defined by a mesh [3].

XSBench A mini-app representing a key computational kernel of the Monte Carlo Neutronics application OpenMC [21].
RSBench A mini-app to represent the multipole resonance representation lookup cross section algorithm [20].
SimpleMoC A mini-app that demonstrates the performance characteristics and viability of the Method of Characteristics

(MOC) for 3D neutron transport calculations in the context of full scale simulation of light water reactor [9].
MiniFE A proxy application for unstructured implicit finite element codes [10].
MiniAMR A mini-app designed to support the study of adaptive mesh refinement (AMR) codes at scale [10].

Table 1: DOE proxy applications that we use.

NVM
DRAM
XX

Old copy

NVM
DRAM

X

Page X

Evicting page X, but no write needed;
no updates on page X

2

NVM
DRAM

Free page

Evicting page X to NVM and free
 up the old copy of X

3

X

X

Updated page X

Copy page X to DRAM1

NVM
DRAM
XX

Old copy

Copy page X to DRAM1

....

2 Update page X

DRAM
X

Updated copy

Case 1 (No update)

Case 2 (Update)

Figure 3: Handling page eviction in inclusive memory ex-
tensions.

the dirty bit in MMU. Such simple checking can save many
writes to the NVM. To study the effectiveness of inclusive
NVM policy, Figure 4 shows the number of cells written
in inclusive memory extensions relative to non-inclusive sys-
tem where old copies are simply discarded. We can see that
up to 90% (MiniFE), and an average of 49.5%, of the writes
could be eliminated by adopting an inclusive policy.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

MiniFE	 MiniAMR	 XSBench	 RSBench	 Lulesh	 SimpleMoC	 Average	 Re
la
%v

e	
#	
Ce

ll	
W
rit
es
	

Applica%ons	

The	 Impact	 of	 Inclusion	 Property	 on	 Number	 of	 Writes	

Baseline	 (non-‐inclusive)	

Inclusive	

Figure 4: The impact of inclusion property on the number
of writes.

The cost of deploying the inclusion policy is wasted NVM
capacity. Systems with low DRAM:NVM ratio will ben-
efit from the inclusion property at negligible ratio, how-
ever, systems with a high ratio (e.g., 50%) might prefer
to use the whole capacity and disable the inclusion prop-
erty. The decision of making the memory extension inclu-
sive or not depends on applications’ memory footprint and

the DRAM:NVM ratio.
To reduce the number of writes further, we propose a sim-

ple compression technique based on a well-known insight
that many pages have a large percentage of similar words
within them. We call our technique Most Frequent Word
Reduction (MFWR). As explained in Figure 5, a memory
page can contain several words (e.g., 4 bytes words) that
have similar content. Accordingly, at write time, the OS
scans to find the most frequent word (MFW) in a page and
constructs a bitmap that indicates all locations where the
value of MFW appears. Later, all other words are packed
together to form a compact page. The bitmap along with
the MFW can be stored either in the page table metadata
(e.g., struct page) or packed together with other words to be
written to NVM. Since DIMM-based NVMs can be written
in cache line granularity (e.g., 64B) the packed words will
be written using the least number of cache lines that can
include all words. Finding the most frequent word or value
was studied and shown to be promising in the context of
compressing cache lines in caches [27].

MFWR requires a single pass over the page data to find
the most occurring word and construct its bitmap, then pack
the words and the metadata. Our evaluation showed that
the performance overhead is negligible (about 1.01% on
average and up to 3.2% in the worst case) given that the
writes occur in the background. Note that other reduction
schemes, such as general compression, are possible, but they
come at additional costly latency that can add to the read
and write paths of the NVM device.

Figure 6 shows the impact of using MFWR technique on
number of writes for the MFWR that only looks for the most
frequent word (MFWR-1W) with other approaches that op-
timize the two most frequent words (MFWR-2W) and the
three most frequent words (MFWR-3W).

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

MiniFE	 MiniAMR	 XSBench	 RSBench	 Lulesh	 SimpleMoC	 Average	 Re
la
%v

e	
#	
Ce

ll	
W
rit
es
	

Applica%ons	

The	 Impact	 of	 Most	 Frequent	 Word	 Reduc%on	 (MFWR)	 Technique	

Baseline	 (non-‐inclusive)	

MFWR-‐1W:	 Inclusive	

MFWR-‐2W:	 Inclusive	

MFWR-‐3W:	 Inclusive	

Figure 6: The impact of MFWR on the number of writes.

As shown in Figure 6, adding MFWR-1W to the inclu-
sive policy can eliminate an average of 61.5% of writes com-
pared to the non-inclusive memory extension policy. How-
ever, adding the number of frequent words to optimize did

Metadata

Write
savings

Page

Similar Words

Find the Most Frequent Word (MFW) and its bitmap

Similar Words

1

0 1 0 1 1 1 0 0Bitmap

MFW

Pack the remaining words together, without the MFW2

Compact Page
0

Figure 5: The Most Frequent Word Reduction (MFWR) technique.

not bring significant benefits than MFWR-1W. MFWR-2W
and MFWR-3W reduce the number of writes by less than
1% relative to MFWR-1W. Thus, for the rest of the paper,
we will use MFWR-1W as the default MFWR technique.

5.1.2 Hardware-aware System Software Management
While the inclusion property is a system software opti-

mization, other techniques for write reduction has been pro-
posed in hardware. For example, Data-Comparison Writes
(DCW) technique [26] has been proven to significantly re-
duce the number of writes. DCW compares the old values
of the NVM cells with the new data to be written, and then
eliminates programming cells that have not changed in val-
ues. DCW is efficient due to the fact that the probability
of having the bit written to a cell being similar to the old
value is 50%, hence a promising write reduction. Unfor-
tunately, integrating DCW is tricky due to the fact that
NVMs are expected to deploy wear-leveling techniques that
try to distribute the page writes uniformly across the device
pages. DCW is most efficient when the pages get written
in the same exact physical pages. In other words, if the
NVM controller deploys a wear-leveling mechanism, a page’s
physical location may have changed and hence the data be-
ing written on the new free page can be significantly differ-
ent. A translation layer, similar to Flash Translation Layer
(FTL), finds a free page depending on the wear-leveling algo-
rithm and write the page there. Once the write is complete,
the translation layer just logs the new NVM device physi-
cal address for that logical address. DIMM-attached NVM
devices are also expected to deploy some wear-leveling mech-
anisms [15].

To tackle the problem, we propose a placement hint we
denote by PIN. PIN hint is provided to the NVM controller
when writing a page. For example, we can use one of the
reserved fields in the NVM Express protocol [1] command
structure to hint the NVM controller to enforce placing the
logical page to its previous mapping in the translation table.
Otherwise, the NVM controller will simply deploy its de-
fault wear-leveling technique. In the case of DIMM-attached
NVM, the hint could be as simple as writing to a memory
mapped register that is visible to the memory controller, and
hence avoid applying wear-leveling techniques when writing
the physical page to NVM. To emulate the impact of wear-
leveling on DCW effectiveness, we assume that the wear-

leveling technique will pick a physical location that has no
logical relationship to the actual value of the page to be
written, hence we use a randomly filled data for the physi-
cal destination.

Figure 7 shows the impact of DCW technique with and
without pinning hints. From Figure 7, we can observe that
DCW with pinning and without pinning can save an average
of 95% and 83.8% of writes, respectively.

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

Mi
niF
E	

Mi
niA
MR
	

XS
Be
nc
h	

RS
Be
nc
h	

Lu
les
h	

Sim
ple
Mo
C	

Av
era
ge
	

Re
la
%v

e	
#	
Ce

ll	
W
rit
es
	

Applica%ons	

The	 Impact	 of	 Data	 Comparison	 Write	 (DCW)	 Technique	

Baseline	 (non-‐inclusive)	

DCW:	 Inclusive:NO_PINNING	

DCW:	 Inclusive:PINNING	

Figure 7: The impact of DCW on the number of writes.

5.1.3 Comparison Between Write Reduction Schemes
Figure 8 shows how different HW/SW approaches can af-

fect the number of writes on the NVM device. The number
of cell writes was calculated depending on the write reduc-
tion algorithm. As an example, the baseline writes 4096
bytes for every page write, while the DCW technique only
writes the cells having their values changed. We observe that
for some applications, such as XSBench and MiniFE, the
inclusion property could eliminate about 90% of the writes.
The main reason behind this is that a large percentage of
pages are only being read and rarely get written after ini-
tialization. However, for some other applications, such as
MiniAMR and SimpleMOC, inclusion only saves less than
10% of writes. We can observe that by adding our pro-
posed MFWR scheme we can even reduce the number of
writes further by 23.9% relative to the inclusive case. The
main advantage for both of the previously mentioned tech-
niques is that they are implemented completely in the sys-
tem software side and hence no hardware support is needed.
However, in the presence of hardware write reduction tech-
niques, the system software should be aware of that and help
guide the NVM controller. NVM devices with DCW hard-

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

MiniFE	 MiniAMR	 XSBench	 RSBench	 Lulesh	 SimpleMoC	 Average	

Re
la
%v

e	
#	
Ce

ll	
W
rit
es
	

Applica%ons	

The	 Impact	 of	 HW/SW	 Approaches	 on	 #	 Writes	

Baseline	 (non-‐inclusive)	

Inclusive	

MFWR:	 Inclusive	

DCW:	 Inclusive:NO_PINNING	

DCW:	 Inclusive:PINNING	

Figure 8: The impact of various write reduction schemes on the number of writes.

1	

10	

100	

1000	

10000	

MiniFE	 MiniAMR	 XSBench	 RSBench	 Lulesh	 SimpleMoC	

M
ax
im

um
	 L
ife

+m
e	
(y
ea
rs
)	

Applica+ons	

The	 Impact	 of	 HW/SW	 Approaches	 on	 NVMs	 Life+me	

Baseline	 (non-‐inclusive)	

Inclusive	

MFWR:	 Inclusive	

DCW:	 Inclusive:NO_PINNING	

DCW:	 Inclusive:PINNING	

Figure 9: The impact of various write reduction schemes on the expected NVM lifetime.

ware support utilizing system software hints can reduce the
number of writes by an average of 32.3% compared to those
without software hints.

In summary, we presented several practical schemes that
can also benefit from hardware support that could eliminate
up to an average of 95% of writes. Saving such amount
of writes reduces the overall energy and increases system
lifetime. The additional lifetime can be used for other es-
sential HPC-related purposes, like checkpointing and fault
tolerance. Figure 9 shows a conservative estimation for the
NVM lifetime depending on the application run on the sys-
tem. Our calculation assumes that every single cell of the
NVM device can endure ten million writes and we have a
16GB NVM device. We calculate the rate of writing cells
for every application and calculate the estimated lifetime of
the NVM device. We can observe that some applications,
such as Lulesh, can wear out in about 5 years, but with us-
ing proper write reduction techniques it can survive up to
100 years.

5.2 The Impact of DRAM:NVM Ratio on Per-
formance

Different NVM technologies are expected to have very
high densities. For example, PCM is expected to have 4×
the DRAM density [16]. However, the way of organizing the
cells can also affect the density. For example, a cross-point
organization can highly increase the density. Another way
of improving the density further is to use multi-level cells
(MLCs) where different resistance levels for the same cell
can encode more than a single bit. In this section, we study
the impact of varying the DRAM:NVM ratio for the mem-

1	

3	

5	

7	

9	

11	

13	

50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DAM:NVM	 Ra%o	

DRAM:NVM	 Ra%o	 Impact	 on	 Performance	 Summary	

Flash	

PCM	

Figure 11: The impact of the DRAM:NVM ratio on perfor-
mance.

ory footprint of the applications. For example, 1:4 (25%)
ratio indicates that up to 20% (exclusive) or 25% (inclu-
sive) of the application memory footprint may be present
in DRAM and the rest is in the NVM. The ratio itself can
be determined by the OS and restricted with the maximum
capacities of both of the DRAM and the NVM. Figure 10
shows the impact of DRAM to NVM ratio on performance
for the applications we study.

We can observe that different applications are affected
differently by the DRAM:NVM ratio. For instance, some
applications, such as MiniAMR and SimpleMoC, show less
sensitivity than other applications. The main reason behind
this is that the memory pages are accessed subsequently af-
ter the first access and rarely get reused after that, hence
the number of page faults changes slightly with changing

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

100%	 50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DRAM	 Cache	 Percentage	

FLASH	

PCM	

DRAM-‐only	

(a) Lulesh

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

100%	 50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DRAM	 Cache	 Percentage	

FLASH	

PCM	

DRAM-‐only	

(b) XSBench

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

100%	 50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DRAM	 Cache	 Percentage	

FLASH	

PCM	

DRAM-‐only	

(c) RSBench

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

100%	 50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DRAM	 Cache	 Percentage	

FLASH	

PCM	

DRAM-‐only	

(d) SimpleMoC

0	

1	

2	

3	

4	

5	

6	

7	

8	

100%	 50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DRAM	 Cache	 Percentage	

FLASH	

PCM	

DRAM-‐only	

(e) MiniAMR

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

100%	 50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	

DRAM	 Cache	 Percentage	

FLASH	

PCM	

DRAM-‐only	

(f) MiniFE

Figure 10: The impact of DRAM:NVM ratio on performance for a system using PCM vs. Flash.

the DRAM:NVM ratio. In case of Lulesh, MiniFE and RS-
Bench, the actual working set is large enough to fit into
DRAM and hence changing the DRAM:NVM ratio can af-
fect performance.

The exact DRAM:NVM ratio where the application per-
formance gets degraded differs across applications. For ex-
ample, MiniFE performance degrades significantly when DRAM:NVM
ratio is less than or equal to 25%, however, for RSBench the
DRAM:NVM ratio of 12.5% is the threshold point. Note
that determining the DRAM:NVM ratio where the applica-
tion’s performance starts to get degraded significantly relies
on the actual working set (not only memory footprint) of
the application.

In summary, as shown in Figure 11, at DRAM:NVM ratio
of 1:4 (25%), which is expected to be the actual DRAM:NVM
ratio in future systems [8], PCM is expected to deliver an
average performance with only 63.8% performance degra-
dation compared to the ideal DRAM-only design. However,
Flash is expected to deliver an average of 368% performance
degradation to the ideal DRAM-only design.

5.3 OS-level Page Prefetching
Prefetching can be used to reduce the impact of OS page

cache misses by speculating which pages will be used in the
future, and bring them ahead of time. However, many pa-
rameters should be considered when using software prefetch-
ing (e.g., what drives the prefetching, where in the code
to execute the prefetching). The most recent approaches
for prefetching suggest that software prefetching should be
added to the page fault handler [18, 14]. In our implemen-
tation, we exploit the workqueue threads feature in modern
Linux kernels. Workqueues enable asynchronous work sub-

Page fault handlerPage Fault

Event Timeline

Prefetch

Complete

(a) Synchronous prefetching

Page fault handlerPage Fault

Event Timeline

Initiate
Complete

Prefetch Kernel Thread

(b) Asynchronous prefetching

Figure 12: Synchronous vs. asynchronous prefetching.

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

8600000	
8800000	
9000000	
9200000	
9400000	
9600000	
9800000	
10000000	
10200000	
10400000	
10600000	
10800000	

0	 (
No
	 pr
efe
tch
)	 1	 4	 8	 16

	
32
	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

#	
M
is
se
s	

Depth	

Lulesh	

Savings	

Par>al	 misses	

Full	 misses	

Execu>on	 Time	
(seconds)	

(a) Lulesh

200	
220	
240	
260	
280	
300	
320	
340	
360	
380	

13100000	

13150000	

13200000	

13250000	

13300000	

13350000	

13400000	

0	 (
No
	 pr
efe
tch
)	 1	 4	 8	 16

	
32
	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

#	
M
is
se
s	

Depth	

XSBench	

Savings	

Par=al	 misses	

Full	 misses	

Execu=on	 Time	
(seconds)	

(b) XSBench

200	

210	

220	

230	

240	

250	

260	

44500000	
45000000	
45500000	
46000000	
46500000	
47000000	
47500000	
48000000	
48500000	
49000000	

0	 (
No
	 pr
efe
tch
)	 1	 4	 8	 16

	
32
	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

#	
M
is
se
s	

Depth	

RSBench	

Savings	

Par?al	 misses	

Full	 misses	

Execu?on	 Time	
(seconds)	

(c) RSBench

1800	
1820	
1840	
1860	
1880	
1900	
1920	
1940	
1960	
1980	
2000	

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

0	 (
No
	 pr
efe
tch
)	 1	 4	 8	 16

	
32
	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

#	
M
is
se
s	

Depth	

SimpleMOC	

Savings	

Par=al	 misses	

Full	 misses	

Execu=on	 Time	
(seconds)	

(d) SimpleMoC

0	
5	
10	
15	
20	
25	
30	
35	
40	

0	

500000	

1000000	

1500000	

2000000	

2500000	

3000000	

3500000	

0	 (
No
	 pr
efe
tch
)	 1	 4	 8	 16

	
32
	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

#	
M
is
se
s	

Depth	

MiniAMR	

Savings	

Par=al	 misses	

Full	 misses	

Execu=on	 Time	
(seconds)	

(e) MiniAMR

2000	
2500	
3000	
3500	
4000	
4500	
5000	
5500	
6000	

0	

100000000	

200000000	

300000000	

400000000	

500000000	

600000000	

0	 (
No
	 pr
efe
tch
)	 1	 4	 8	 16

	
32
	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

#	
M
is
se
s	

Depth	

MiniFE	

Savings	

Par=al	 misses	

Full	 misses	

Execu=on	 Time	
(seconds)	

(f) MiniFE

Figure 13: The impact of OS-level prefetching.

mission, where a function can simply submit a work item
that can be shortly handled by a kernel thread. Figure 12
shows the difference between synchronous and asynchronous
prefetching. In the case of synchronous prefetching, the
kernel has to wait to prefetch the pages before completing
the handling of the page fault. In contrast, asynchronous
prefetching will just add a work item to the workqueue,
which will be serviced by a kernel thread whenever possi-
ble.

Synchronous prefetching can add significant overhead to
the page fault latency, and hence limiting the number of
pages that can be prefetched without affecting the average
page-fault handler latency; the page fault handler will be
delayed until the prefetching is complete. For example, in
[18], the authors found that prefetching more than two pages
can increase the average page fault latency. Accordingly, we
use asynchronous software prefetching. When a page fault
occurs, the page fault handler decides whether to issue a
prefetch or not, depending on if there is a currently running
prefetch thread. If the decision is made to execute prefetch-
ing, a separate kernel task/workqueue will be issued. The
prefetch thread will be scheduled by the kernel scheduler as
any other tasks with low-priority.

As observed by Oskin and Loh [14], at page-level granular-
ity, simple stride prefetcher can be more efficient than much
more complicated prefetchers, such as Markov prefetcher.
Accordingly, to evaluate the effectiveness of prefetching, we
use a simple stride prefetcher that records the most recent
8 strides. The prefetcher issues prefetching requests for
strides that appeared at least 5 times since it was initially
recorded, hence avoid prefetching wrongly detected streams.
The number of prefetches for each stride is determined by
the depth of the prefetcher. Figure 13 shows the impact of

prefetching on performance while varying the depth of the
prefetcher. For each application, the primary axis shows
the total number of page faults, while the secondary axis
(to the right) shows the execution time. The page faults
(i.e., DRAM misses) are categorized into: full and partial
misses. Partial misses are those occurred while a prefetch
for that page has already started, while full misses are for
those not in DRAM and have no prefetching in progress.
The top area on each figure represents the actual savings in
number of misses compared to no prefetching.

We can observe that prefetching can reduce the number of
page faults by different amounts for different applications.
For example, MiniFE and MiniAMR have significant per-
centage of their faults eliminated due to prefetching. How-
ever, other applications slightly benefit from prefetching.
We also observe that for applications that do not get sig-
nificant reduction in number of faults, the performance can
be penalized. The main reason behind this is the proces-
sor time spent by the kernel thread for prefetching. Fur-
thermore, submitting a work item to the kernel worker is
not free; our measures showed that about 3-4 microseconds
could be added to the page fault handler just for submit-
ting the work. For example, we can see that most of the
applications get their performance degraded at depth of 1,
because for almost every page fault, the page fault handler
will find that there is no prefetching in progress and hence
issue a prefetching request. This adds the work submission
overhead to the page fault handler almost for each miss. In-
terestingly, some applications, such as MiniFE, could gain
up to 37.2% performance improvement. While beyond the
scope of this paper, the OS can adaptively enable/disable
prefetching by learning how efficient prefetching is for dif-
ferent workloads.

5.4 Page Replacement Policy

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

MiniFE	 MiniAMR	 XSBench	 RSBench	 Lulesh	 SimpleMoC	

#	
Pa

ge
	 F
au

lts
	 (R

el
at
ei
ve
	 to

	 F
IF
O
)	

Applica7ons	

Replacement	 Algorithm	 Impact	 on	 Number	 of	 Page	 Faults	

Clock	

Age-‐based	

Figure 14: The impact of page replacement policy.

As we have a fixed number of pages that can fit in the
DRAM, we need to have a policy to choose which pages to
evict when bringing pages from NVM. For this purpose, we
study the effectiveness of the clock algorithm [19] and com-
pare it against the simple FIFO. The clock algorithm works
as follows: a pointer points to the page right after the most
recently inserted one. Each time we want to evict a page,
we start from the page pointed by the pointer to check the
reference bit. The reference bit is set by the hardware at
any access to the page. The reference bit can be checked by
the operating system through the page table entry for the
page. If the reference bit is set to 1, we clear it and move the
pointer to the next page and check it. The process contin-
ues until finding a page with the reference bit cleared, that
page will be chosen for eviction and the pointer will move
to the next page. Finally, we also implement an age-based
algorithm that is different than the clock algorithm in that
it has a counter per page. The counter is incremented if the
reference bit is found to be set, and decremented otherwise.
If a page has its counter with value less than or equal to
zero, it will be selected for eviction.

Figure 14 shows the relative number of page faults for
both clock and age-based replacement algorithms compared
to FIFO. We can observe that most of the benchmarks don’t
benefit and even some of them, such as Lulesh, incur more
page fauls when changing the replacement policy. Only XS-
Bench benefits from the replacement policy change. We also
vary the DRAM:NVM ratio and did not observe any change
except for XSBench, where clock and age-based algorithms
could save roughly 50% of the page faults. The reason why
XSBench benefits from the clock algorithm is that it uses
some indirection table that holds pointers to small arrays.
The accesses to the whole structure are random, but keeping
the pointers structure, which is frequently accessed is bene-
ficial. The clock and age-based algorithms can detect such
pages that are frequently accessed and try to keep them in
DRAM as much as possible. For all other applications, our
conclusion is consistent with previous research findings [22]
in that at the page-level granularity, a simple algorithm such
as FIFO would be more efficient than other more complex
schemes such as clock algorithm.

6. SENSITIVITY STUDY
Flash devices can have different write latencies, depend-

ing on the technology and number of levels in cells, i.e.,
Single-Level Cell (SLC) or Multi-Level Cell (MLC). For in-
stance, the authors in [30] found that the effective write
latency can reach up to several milliseconds. Accordingly,
we perform a sensitivity study to estimate the impact of var-
ious write latencies of flash memory on the execution time of
the memory extension, compared to that of the PCM-based
memory extension. Figure 15 presents a comparison for a
flash latency with 25µs read latency, while varying the write
latency from 25µs, 100µs, 200µs, and up to 400µs.

1	

6	

11	

16	

21	

26	

50%	 25%	 12.50%	 6.25%	

Re
la
%v

e	
Ex
ec
u%

on
	 T
im

e	
(N
or
m
ai
ze
d	
to
	 D
RA

M
-‐o
nl
y	

sy
st
em

)	

DRAM:NVM	 Ra%o	

Sensi%vity	 for	 Flash	 Write	 Latency	

FLASH-‐25us	

FLASH-‐100us	

FLASH-‐200us	

FLASH-‐400us	

PCM	

Figure 15: The impact of NVM write latency on perfor-
mance, for various DRAM:NVM ratios.

From the figure, we can observe that longer flash write
latency can affect the performance of Flash-based memory
extensions significantly; the gap between PCM-based and
Flash-based memory extensions becomes even greater.

7. CONCLUSION
Our work studied the effectiveness of using emerging NVMs

as memory extensions. We showed how using emerging
NVMs as memory extensions without write-aware manage-
ment techniques can have serious impact on systems’ life-
time. We discussed and proposed several management schemes
and evaluated their impact on reducing the number of writes.
We also explored the impact of varying the DRAM:NVM
ratio of memory extensions on performance, for both Flash
and PCM. To enhance performance, we investigated and
proposed OS-level prefetching, which showed promising re-
sults for some applications. Furthermore, we studied the
impact of page replacement policy on number of page faults
(NVM accesses). Our study showed that only one out of six
applications benefits noticeably from changing replacement
policy to temporal reuse aware policies, such as the clock
and age-based algorithms.

We believe that our work gives insights about the impact
of using emerging NVMs as memory extension and helps in
understanding how to manage such memory extensions to
make them more reliable.

8. ACKNOWLEDGMENT
We would like to thank the anonymous reviewers, My-

oungsoo Jung and Mark Oskin for their generous feedback
and insights to improve the paper.

AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.
c©2016 Advanced Micro Devices, Inc. All rights reserved

9. REFERENCES
[1] A. Huan. NVM Express, Revision 1.0c. Intel

Corporation, 2012.

[2] Huai, Yiming, et al. Observation of spin-transfer
switching in deep submicron-sized and low-resistance
magnetic tunnel junctions. Applied Physics Letters
84.16: 3118-3120, 2004.

[3] Hydrodynamics Challenge Problem, Lawrence
Livermore National Laboratory. Technical Report
LLNL-TR-490254.

[4] Intel 3D XPoint.

[5] Persistent Memory Programming. http://pmem.io,
2014.

[6] A. Awad, B. Kettering, and Y. Solihin. Non-Volatile
Memory Host Controller Interface Performance
Analysis in High-performance I/O Systems. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), 2015, pages 145–154, March 2015.

[7] S. Chhabra and Y. Solihin. i-NVMM: A Secure
Non-volatile Main Memory System with Incremental
Encryption. In Proceedings of the 38th Annual
International Symposium on Computer Architecture,
ISCA ’11, pages 177–188, 2011.

[8] R. Crooke and A. Fazio. Intel Non-Volatile Memory
Inside. The Speed of Possibility Outside. In Intel
Developer Forum (IDF), 2015.

[9] G. Gunow, J. R. Tramm, B. Forget, and K. Smith.
Simplemoc - a performance abstraction for 3d moc. In
ANS MC2015. American Nuclear Society, 2015.

[10] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring,
C. Edwards, A. Williams, M. Rajan, E. Keiter, H. K.
Thornquist, and R. W. Numrich. Improving
performance via mini-applications. In Sandia Report
2009.

[11] B. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable dram
alternative. In International Symposium on Computer
Architecture (ISCA), 2009.

[12] Z. Li, R. Zhou, and T. Li. Exploring high-performance
and energy proportional interface for phase change
memory systems. IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA),
pages 210–221, 2013.

[13] P. J. Nair, D.-H. Kim, and M. K. Qureshi. ArchShield:
Architectural Framework for Assisting DRAM Scaling
by Tolerating High Error Rates. In Proceedings of the
40th Annual International Symposium on Computer
Architecture (ISCA), pages 72–83, 2013.

[14] M. Oskin and G. H. Loh. A Software-managed
Approach to Die-stacked DRAM. In Proceedings of the
24th International Conference on Parallel
Architectures and Compilation Techniques (PACT),
2015.

[15] M. Qureshi, J. Karidis, M. Franceschini,
V. Srinivasan, L. Lastras, and B. Abali. Enhancing

lifetime and security of PCM-based Main Memory
with Start-Gap Wear Leveling. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 14–23, 2009.

[16] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. ACM SIGARCH
Computer Architecture News, 37(3):24–33, 2009.

[17] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page
Placement in Hybrid Memory Systems. In Proceedings
of the International Conference on Supercomputing
(ICS), pages 85–95. ACM, 2011.

[18] M. Saxena and M. M. Swift. FlashVM: Virtual
Memory Management on Flash. In Proceedings of the
2010 USENIX conference on USENIX Annual
Technical Conference (USENIX-ATC), pages 14–14.
USENIX Association, 2010.

[19] A. S. Tanenbaum. Modern Operating Systems. 2009.

[20] J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey.
Performance analysis of a reduced data movement
algorithm for neutron cross section data in monte
carlo simulations. In Solving Software Challenges for
Exascale, pages 39–56. Springer, 2014.

[21] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz.
XSBench - The Development and Verification of a
Performance Abstraction for Monte Carlo Reactor
Analysis. In PHYSOR 2014 - The Role of Reactor
Physics toward a Sustainable Future, Kyoto.

[22] A. J. Uppal and M. R. Meswani. Towards
Workload-Aware Page Cache Replacement Policies for
Hybrid Memories. In Proceedings of the 2015
International Symposium on Memory Systems
(MEMSYS), pages 206–219, 2015.

[23] B. Van Essen, H. Hsieh, S. Ames, R. Pearce, and
M. Gokhale. DI-MMAP: a scalable memory-map
runtime for out-of-core data-intensive applications.
Cluster Computing, 18(1):15–28, 2013.

[24] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale.
On the role of NVRAM in data-intensive
architectures: an evaluation. In Proceedings of IEEE
26th International Parallel & Distributed Processing
Symposium (IPDPS), pages 703–714, 2012.

[25] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu,
F. Blagojević, L. Franca-Neto, D. L. Moal, T. Bunker,
J. Xu, S. Swanson, and Z. Bandić. DC Express:
Shortest Latency Protocol for Reading Phase Change
Memory over PCI Express. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies
(USENIX-FAST), pages 309–315, 2014.

[26] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee,
and B. gon Yu. A low power phase-change random
access memory using a data-comparison write scheme.
In Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), pages 3014–3017,
2007.

[27] J. Yang, Y. Zhang, and R. Gupta. Frequent Value
Compression in Data Caches. In Proceedings of the
33rd annual ACM/IEEE international symposium on
Microarchitecture (MICRO), pages 258–265, 2000.

[28] J. J. Yang, D. B. Strukov, and D. R. Stewart.
Memristive Devices for Computing. Nature
Nanotechnology, 8(1):13–24, 2013.

[29] V. Young, P. J. Nair, and M. K. Qureshi. DEUCE:
Write-Efficient Encryption for Non-Volatile Memories.
In Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
33–44, 2015.

[30] J. Zhang, G. Park, M. M. Shihab, D. Donofrio,
J. Shalf, and M. Jung. OpenNVM: An open-sourced
FPGA-based NVM controller for low level memory
characterization. In Proceedings of the 33rd IEEE
International Conference on Computer Design
(ICCD), pages 666–673, 2015.

[31] Y. Zhang and S. Swanson. A study of application
performance with non-volatile main memory. In
Proceedings of the 31st Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–10, 2015.

[32] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable
and Energy Efficient Main Memory Using Phase
Change Memory Technology. In Proceedings of the
36th Annual International Symposium on Computer
Architecture (ISCA), pages 14–23, 2009.

