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Survey of Energy-Cognizant Scheduling
Techniques

Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova and Manuel Prieto

Abstract—Execution time is no longer the only metric by which computational systems are judged. In fact explicitly sacrificing raw
performance in exchange for energy savings is becoming a common trend in environments ranging from large server farms attempting
to minimize cooling costs to mobile devices trying to prolong battery life. Hardware designers, well aware of these trends, include
capabilities like DVFS (to throttle core frequency) into almost all modern systems. However, hardware capabilities on their own are
insufficient and must be paired with other logic to decide if, when, and by how much to apply energy-minimizing techniques while
still meeting performance goals. One obvious choice is to place this logic into the OS scheduler. This choice is particularly attractive
due to the relative simplicity, low cost, and low risk associated with modifying only the scheduler part of the OS. Herein we survey
the vast field of research on energy-cognizant schedulers. We discuss scheduling techniques to perform energy-efficient computation.
We further explore how the energy-cognizant scheduler’s role has been extended beyond simple energy minimization to also include
related issues like the avoidance of negative thermal effects as well as addressing asymmetric multicore architectures.

Index Terms—Survey, Shared Resource Contention, Thread Level Scheduling, Power-aware Scheduling, Thermal Effects, Asymmetric
Multicore Processors, Cooperative Resource Sharing.
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1 INTRODUCTION
Increasingly widespread use of computer systems and
rising electricity prices have brought energy efficiency
to the forefront of the current research agenda. Energy
consumption has become a key metric for evaluating
how good a computer system is, alongside more tradi-
tional performance metrics like the speed of execution.
A lot of effort is focused on building more energy-
efficient devices, but even as the hardware becomes more
energy efficient, the onus of extracting the maximum
efficiency out of it very often falls on the software.
This is particularly true about the CPU devices, which
consume nearly half of energy in server systems. Modern
processors provide ”knobs” allowing to trade execution
speed for power efficiency, but the decision of how to
use these knobs to minimize the impact on speed while
saving as much energy as possible falls onto the runtime
resource manager, such as the operating system. Tuning
the settings of energy-management knobs often involves
deciding when and where to run each software thread
and at what speed - these decisions are natural to make
as part of conventional process scheduling routines.
Therefore, we refer to CPU energy-management policies
and algorithms employed in the software runtime as
energy-cognizant scheduling. Energy-cognizant scheduling
is the subject of this survey, and we focus specifically of
managing energy consumption of the CPU.

We examine three types of hardware mechanisms
allowing us to manage CPU energy consumption: (1)
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Dynamic Voltage and Frequency Scaling (DVFS) and
Dynamic Power Management (DPM), (2) thermal man-
agement and (3) asymmetric multicore designs.

DVFS and DPM allow us to dynamically throttle the
voltage and frequency of the CPU or to temporarily
suspend its operation and put it in a low-power state.
As we throttle or suspend the processor we inevitably
sacrifice execution speed, and so the key challenge in
designing DVFS/DPM control algorithms is to find the
setting that saves the most power while sacrificing the
least speed. This requires understanding applications’
characteristics and the intricacies of their interaction
with the hardware, and that is why DVFS/DPM control
algorithms are non-trivial to design and are undeniably
interesting.

We then survey runtime algorithms that perform ther-
mal management. Although in a somewhat indirect fash-
ion, processor temperature plays a crucial role in energy
consumption, because as the temperature becomes high,
the system needs to run fans to cool off the processor.
Cooling consumes electricity, and so managing system
temperature can reduce the amount of energy spent
on cooling. Thermal management relies primarily on
altering the physical placement of threads on cores so
as to avoid thermal hotspots and temperature gradients
(when one area on the chip is much hotter than another).
Thermal management algorithms rely on curious and
unexpected effects on processor temperature created by
the instruction mix, the physical placement of threads on
the chip and threads’ relative proximity to one another.

While DVFS and DPM allow dynamically throttling
the speed and thus the power consumption of the pro-
cessor, even greater energy efficiency can be achieved
if CPU cores are engineered from the start to be low-
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power. However, low-power cores typically offer smaller
and weaker execution engines than their high-power
counterparts, making significant sacrifices in processing
speed . An interesting attempt at resolving this dilemma
is offered by asymmetric systems. These systems are built
with both low-power and high-power cores on the same
chip. Both core types are able to execute the same binary,
but they differ in microarchitecture, power profiles and
performance1. As a result, the thread scheduler can use
this asymmetry as a knob for controlling speed-energy
trade-off. By scheduling threads that do not benefit
from advanced features of high-power cores on low-
power cores and vice versa, the scheduler can maximize
performance within the system’s frugal power budget.

While the algorithms discussed in this paper were
developed for different types of energy-management
mechanisms their unifying theme is that they work
by dynamically monitoring properties of the workload,
making decisions that consider how the characteristics of
the workload interplay with those of the hardware, and
controlling the configuration and allocation of CPU cores
so as to make the best trade-off between performance
and power consumption.

This survey is organized as follows. Section 2 intro-
duces basic concepts on power and energy consumption
and presents a classification of the different techniques
analyzed in this survey. Section 3 covers scheduling
algorithms that use DVFS and DPM. Section 4 discusses
thermal management. Section 5 focuses on scheduling
for asymmetric machines. We conclude and discuss what
we see as the future directions of energy-cognizant
scheduling research in Section 6.

2 BACKGROUND
2.1 Power dissipation basics
CMOS devices are the building blocks of most general-
purpose computing systems today. Power consumed
in CMOS circuits can be divided into three compo-
nents: dynamic, static and short-circuit power. For many
years dynamic power dissipation, which occurs due to the
switching of transistors, has been the dominant factor
in CMOS power consumption. Dynamic power can be
approximated with the following formula:

Pd = Cl ·Nsw · V
2

dd · f (1)

where Cl is the load capacitance, a significant percent-
age of which is wire related, Nsw is the average number
of circuit switches per clock cycle, Vdd is the supply
voltage and f is the clock frequency.

The shrinking of the feature size in the latest tech-
nology generations has enabled to substantially reduce
the supply voltage (Vdd), which reduces power dissipa-
tion quadratically. Unfortunately, decreasing the supply
voltage increases the circuit delay and so the circuits

1. Heterogeneous systems where cores of different types support
different instruction sets are not discussed in this survey.

cannot be driven at the same clock frequency. More
specifically, the clock frequency is almost linearly related
to the supply voltage as follows:

f = k ·
(Vdd − Vth)

2

Vdd

(2)

where k is a constant and Vth is the threshold volt-
age [1], [2]. In turn, Pd is roughly cubically related to
f : Pd ≈ Cl · Nsw ·

f3

k2 . As a result, a reduction in the
supply voltage and the clock frequency reduces dynamic
power cubically (and dynamic energy quadratically) at
the expense of up to a linear increase of execution
time. For example, consider an application that takes
10 seconds to complete at a given processor frequency
f . At this frequency the dynamic power and energy of
the task is denoted by Pd and Ed respectively, where
Ed = Pd · completion time (hence, Ed = Pd · 10). Suppose
further that, when reducing the processor frequency and
supply voltage by half, this task takes 20 seconds to
complete. The new dynamic power P ′

d and energy E′

d

consumed by the task in this scenario would be:

P ′

d = Cl ·Nsw ·

(
Vdd

2

)2

·

f

2

=
1

8
· Cl ·Nsw · V

2

dd · f =
1

8
· Pd

E′

d = P ′

d · 20 =
5

2
· Pd =

5

2
·

Ed

10
=

1

4
· Ed

The second component of power dissipation, static
(or leakage) power, has to do with the existence of leak-
age current flowing between the power source and the
ground. Subthreshold leakage, the main subcomponent
of leakage power, represents the power dissipated by
a transistor whose gate is intended to be off. In the
latest process generations subthreshold leakage power
has increased exponentially with respect to previous
generations, mainly due to joint reductions in the supply
and the threshold voltage2. Currently, leakage power
constitutes 20–40% of the total power dissipation [3].
Of special attention is the exponential dependence of
leakage power on temperature. As the system’s temper-
ature rises, leakage power becomes a more significant
portion of the total power. Most research efforts to
reduce leakage power consumption are taking place at
the process level [4], [5] and at the microarchitectural
level [6], [7], [8], and so they are not not within the scope
of our survey. Nevertheless due to the relation between
temperature and static power, techniques described in
Section 4, which strive to control the processor temper-
ature, contribute to reducing static power as well.

Finally, short-circuit or “glitching” power is the power
dissipated when both the n and p transistors of a
CMOS gate are conducting simultaneously. Because

2. It is evident from Equations 1 and 2 that Vdd and Vth have to be
scaled down simultaneously in order to maintain performance while
saving power.
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short-circuit power is comparatively insignificant to dy-
namic and static power, this component of power con-
sumption has not drawn as much attention as the others
from the research community and the industry.

2.2 Energy Management at Runtime
Examining the relationships in Eq. 1 justifies three main
research directions aiming to reduce system energy con-
sumption via software techniques used at runtime. The
first group of solutions is based on Dynamic Voltage and
Frequency Scaling (DVFS) and Dynamic Power Man-
agement (DPM). These solutions dynamically vary the
processor voltage and frequency. Since reducing voltage
and frequency may lower performance, the DVFS/DPM
based solutions consider relationship between frequency
and performance, taking into account the fact that some
applications slow down less than others when processor
frequency is reduced.

The second group of solutions, Thermal Management,
has to do with the fact that processor temperature has a
significant impact on energy consumption. For example,
when a processor heats up, the system must increase
activity of the cooling infrastructure (e.g., fans), which
consume energy. This group of solutions relies on the
observation that different applications have different
effect on processor temperature and leverages interesting
spatial dependencies when it comes to temperature con-
trol. For instance, running two heat-generating threads
on adjacent cores will create a greater thermal gradient
than running these threads on separate parts of the chip.
Thermal management algorithms thus perform spatial
and temporal placement of threads so as to minimize
thermal emergencies and to reduce thermal gradients,
which occur when the variation in temperature on dif-
ferent parts of the chip is high.

The third group of solutions, Asymmetry-Aware
Scheduling, has to do with systems that are asymmet-
ric in nature. Fundamentally, the system’s power con-
sumption depends on its microarchitecture: for instance,
systems clocked at higher frequencies and featuring
more complex pipelines and larger caches consume more
power than smaller processors with simpler features.
However, simpler and smaller processors also offer
lower performance. To resolve the energy-performance
trade-off, some researchers proposed to build systems
that include both complex, fast and power-hungry cores
as well as simple, lean and power-efficient cores. These
systems are called asymmetric. In this survey we for
the most part discuss symmetric-ISA (Instruction Set
Architecture) asymmetric-performance systems –where
all cores can run the same application binary, but offer
different performance.

In symmetric-ISA asymmetric-performance systems
the onus of deciding which type of core should be used
to run a particular thread falls on the operating system
scheduler. Intelligent scheduling algorithms that opti-
mize system energy and performance are thus crucial.

Another category of asymmetric systems is where
asymmetry is not an explicit design feature, but occurs
because of routine hardware faults (e.g., cores that were
meant to run at identical frequencies actually run at
different ones). These systems share similar challenges
as explicitly asymmetric systems. However, because of
the dynamic nature of their asymmetry (e.g., hardware
faults making the system asymmetric can occur anytime
during the execution) we logically place these solutions
in the same category as DPM and DVFS.

To summarize, energy-management optimizations in
the thread scheduler can be classified in three categories
according to the mechanism upon which they rely:
(1) Dynamic Power Management and Dynamic Volt-
age/Frequency Scaling, (2) Thermal Management, and
(3) Asymmetry-Aware Scheduling. Table 1 summarizes
the main challenges addressed by the these solutions as
well as key ideas behind them. Detailed discussion of
these techniques is presented in the rest of the paper, in
Sections 3, 4 and 5 respectively.

3 DYNAMIC VOLTAGE/FREQUENCY SCALING
AND DYNAMIC POWER MANAGEMENT

3.1 Basics of DPM and DVFS

Dynamic Power Management (DPM) exploits the fact
that certain electronic components/devices may remain
idle a significant amount of time and so they could
be turned off during inactive periods to save energy.
Hardware and software manufacturers have agreed to
create standards such as the ACPI (Advanced Configu-
ration and Power Interface) [9] with introduces several
modes of operation enabling to turn off some parts of
the system such as processor cores, hard drives or Eth-
ernet cards. Contemporary devices offer different power
states. As an illustrative example, Figure 1 depicts the
different power states for processors implementing the
ACPI specification. The idea behind DPM is that these
devices periodically enter idle periods where no work
is available and as a result can be brought into a less
energy-hungry sleep state. The drawback is that when
work becomes available the device needs to be brought
back into the operational state, and this transition incurs
additional latency. The lower the power state (higher
number associated with it), the greater the energy sav-
ings; however the transition latency also becomes higher
for lower active states.

While DPM brings components into non-operational
but energy-efficient states, Dynamic Voltage and Fre-
quency Scaling (DVFS) lowers the dynamic power used
by the processor by limiting its clock frequency (f )
and/or the supply voltage (Vdd). As stated earlier, a joint
reduction in f and Vdd enables to reduce dynamic power
cubically and energy quadratically but may lead to an
increased execution time.
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TABLE 1
Summary of runtime power management techniques

Technique Goals Key Ideas Approaches
DVFS/DPM Reduce operating volt-

age/frequency or power state
while minimizing or bounding
effect on performance.

Some applications suffer
less performance loss from
frequency reduction than
others. Real-time and deadline-
driven applications have
performance slack: no benefit
from performance gains past
meeting their deadline.

Processor frequency is selected based on:
1) a performance model for

relationships between performance
and power based on application
characteristics;

2) a static processor-specific model

Thermal
management

Reduce thermal emergencies
and thermal gradients by pro-
actively or reactively moving
”guilty” threads away from
areas that are likely to overheat.

The type of computation that
threads execute affects how
much heat they are going to
generate.

1) Reactively move threads from hot to
cool areas;

2) pro-actively avoid clustering those
threads that are more likely to pro-
duce heat.

Asymmetry-Aware
Scheduling

Assign threads to cores so per-
formance is maximized

The relative benefit of running
on a ”fast” vs. ”slow” core
depends on the type of code
being executed: e.g., compute-
intensive vs. memory-intensive,
parallel vs. serial.

1) Trial-and-error: schedule threads,
measure performance, adjust;

2) Analytical modeling: predict perfor-
mance of a thread on a core type
given threads characteristics mea-
sured online.

Fig. 1. A processor can be either in an inactive very-low-
power (C1, C2, . . . , Ck) state, or in an active state (C0)
where it can execute instructions. In turn, for processors in
the C0 state a performance/energy trade-off can be made
via multiple performance (Px) states, typically character-
ized by different clock frequencies and supply voltages.

3.2 Algorithms using DVFS and DPM

Weiser et al. [10] were the first to propose the use of
DVFS to reduce the energy consumption in computing
systems. They explored a set of OS-level scheduling
algorithms to reduce CPU idle times by dynamically
adjusting the DVFS level and evaluated each algorithm
by means on simulated execution traces.

Early research efforts exploiting DVFS to reduce en-
ergy consumption arose in the context of real-time sys-
tems, where tasks’ deadlines are given and their WCETs
(Worst-Case Execution Times) are typically known before-
hand. Many algorithms proposed in this domain have
leveraged the performance slack available in real time

applications [11], [12], [13], [14]. The common approach
is to minimize energy consumption by reducing the
performance of the processor (DVFS level) but without
causing the applications in the workload to miss their
deadlines (as depicted by Figure 2). This approach relies
on the observation that completing an application before
its deadline and then idling (e.g., via DPM), is less
energy efficient than running the task at a lower clock
speed and finishing it just in time. Yao et al. [11] propose
an optimal static (off-line) scheduling algorithm for in-
dependent tasks. Another static scheduling algorithm is
presented by Ishihara and Yasuura in [12] which relies on
the fact that a task’s average switch activity (the Cl ·Nsw

factor in Equation 1) is known prior to the execution.
Exploiting this additional information enables the pro-
posed algorithm to reduce energy consumption by 70%.
Aydin et al. [13] show that using exclusively WCETs to
guarantee the temporal constraints of the workload, lack
the potential to take advantage of the unused compu-
tation time since actual and worst-case execution times
in real-time applications may differ significantly. Their
experimental evaluation demonstrates that the proposed
dynamic and speculative solutions, which exploit the
unused computation time, achieve up to 50% energy
reduction with respect to a static algorithm (based on
WCETs). The two scheduling algorithms proposed by
Zhu et al. [14] (designed for independent and dependent
tasks respectively) aim to overcome the main limitation
of previously proposed techniques [11], [12], [13]: they
were specifically designed for uniprocessor systems.
As Aydin’s proposals [13] the scheduling algorithms
presented in [14] also exploit the unused computation
time to dynamically adjust the processor speed but are
capable of sharing this temporal slack among processors.

Another early work utilizing DVFS for dynamic power
management was from Isci et al [15]. Unlike more recent
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Fig. 2. This figure shows two executions of a task running
at different voltage and frequency (DVFS) levels. In the
top graph, the task runs at full speed and finishes well
in advance of its deadline. In the bottom graph, the
processor frequency (and supply voltage) is reduced by
half so that the task’s deadline is just met, which leads to
less energy consumption.

works in this area, they did not account for different
effects of frequency scaling on different applications.
Instead, they use a static estimate of power consumption
and performance at each processor operating mode.
They assume three operating modes: Turbo, where the
processor runs at the highest available frequency and
consumes most power, Eff1, where voltage and fre-
quency are reduced by 5%, and corresponding power
savings and performance loss are statically estimated
at 14% and 5% respectively, and Eff2, with 15% volt-
age/frequency scaling, and 38% and 17% estimated
power savings and performance loss. Their best power
management policy, called MaxBIPS, simply chooses the
mode that is expected to deliver the highest throughput
(measured in Billions of Instructions per Second (BIPS))
given a power budget, based on the static estimate
of power savings and performance loss in each mode.
Although this simple policy delivered significant power
savings, subsequent research attempted to take into ac-
count varying application characteristics when designing
power management policies.

Most of the newer algorithms rely on the observation
that different applications respond differently to changes
in DVFS level, some suffering more performance loss
than others. In particular, the work by Dhiman [16]
as well as many others [17], [18], [19] illustrate that
the degree of performance degradation that an appli-
cation experiences as the processor frequency is low-
ered depends on how compute-bound the application is.
Tasks that are completely compute-bound, referred to as
burn loop [16], [20], show a linear dependence between
processor frequency of execution time. Tasks that are
completely memory-bound, referred to as mem [16], [20],
show negligible slow-down as processor frequency is

reduced. Finally, applications in-between the two ex-
tremes, termed combo [16], [20], have behavior in the
middle. Memory-bound tasks suffer less from reduced
CPU frequency, because the frequency of memory is not
reduced. Choosing the right DVFS setting for combo ap-
plications is a delicate balance between reducing power
consumption and increasing execution time.

Dhiman and Rosing [16] address this challenge by
characterizing applications with respect to their degree
of memory-boundedness. To do this online, they esti-
mate each thread’s Cycles Per Instruction (CPI) stack using
hardware performance counters available on modern
processors. CPI stack is a break-down of cycles spent
executing instructions vs. stalling the processor on cache
misses, TLB misses and memory accesses. Each thread is
then characterized by the metric μ, which is ratio of the
cycles it spends on instruction execution to the overall
cycles. A lower μ indicates memory boundedness, and
higher μ (approaching 1) indicates CPU-boundedness.

The authors then dynamically choose between sev-
eral voltage-frequency settings, which they deem experts,
depending on the μ-value prevalent for the currently
executing workload. If the workload is predominantely
CPU-bound an expert with a higher voltage-frequency
value would be chosen and vice versa. The μ for each
task is continuously estimated to account for phase
changes in programs. In relating the dynamically chang-
ing properties of currently executing workload to the
system voltage-frequency setting, the authors achieve as
much as 49% energy savings.

In [21], Lee and Zomaya exploit DVFS to devise energy
conscious task scheduling algorithms for heterogeneous
distributed systems (multiprocessor and multicomputer
systems). This complementary study analyzes DVFS
techniques in the context of precedence-constrained par-
allel applications. They focus on exploiting CPU idle
time slots caused by intertask communications and are
able to reduce energy consumption with little effect on
the overall execution times.

In [20], Dhiman and Rosing build on their DVFS-
based power management algorithm [16] and on their
earlier work that used purely DPM [22]). For each task
they employ the techniques of [16] to select the best
DVFS policy. However, when the processor becomes idle
they use an approach similar to their dynamic DVFS
algorithm to so decide if/when to put a processor into
a lower power state.

Work such as [15] implicitly raises an important ques-
tion about the granularity of DVFS control in a CMP.
Is it necessary, for performance-energy optimization, to
provide a per-core frequency and voltage control knob?
Doing so adds significant complexity to the manufactur-
ing of the chip while on the other hand offers unpar-
alleled performance optimization potential. Herbert and
Marculescu [23] attempted to answer this question by
simulating a CMP with different granularities of DVFS
control, which they term VF-Islands (each island has a
voltage-frequency knob associated with it; by varying
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the number of cores found in an island they vary the
control granularity). Their experiments with different
workloads and DVFS policies show that providing per
core control will translate into minimal performance
gains while dramatically increase scheduling complexity
as compared to the control-granularity of several cores
per VF-Island. This is also the dominant trend in modern
architectures that place DVFS control at the granularity
of a group of several cores3, most commonly the group
of cores in the chip that share the last-level cache.

As mentioned earlier, DVFS is only capable to reduce
the dynamic component of power consumption, which
depends on f and Vdd. The increasing portion of static
power in the total power dissipation of upcoming man-
ufacturing technologies has led several researchers to
exploring the real limits of using DVFS to reduce energy
consumption today. Cho and Melhem [26], [27] derive
analytical models to study the potential of DPM and
DVFS to reduce energy consumption for parallelizable
applications on multicore systems. In their analysis, they
consider two different scenarios: one where just DVFS is
supported and the other where both DPM and DVFS are
available. The obtained models reveal that substantially
greater power savings can be obtained in the second
scenario where individual processors can be turned off.
LeSueur and Heiser [28] take this observation one step
further by illustrating that the energy savings benefits
of DVFS are diminishing in recent processors due to
rising static power consumption and reduced dynamic
power range. Furthermore, their analysis suggests that in
future generations turning-off unused processors (by set-
ting these in ultra low-power states) will enable greater
energy savings that using DVFS.

3.3 Mapping Execution to Physical Resources
The work discussed thus far in this section has treated
all computational cores as being completely equivalent
and as such has not addressed the issue of mapping
execution to physical contexts. However, due to the facts
that different cores can be throttled to different degrees
creating an artificially asymmetric system, and because
variations in manufacturing create homogeneous cores
which are not all that homogeneous, mapping of execu-
tion contexts to physical resources becomes a vital part
of energy-cognizant scheduling.

Teodorescu and Torrellas [29] discuss scheduling in
light of the fact that due to variations in the manu-
facturing process even homogeneous cores of a CMP
are in fact heterogeneous. More specifically, the cores
vary in the amount of power that they consume and in
the maximum frequency that they support [29]. Work
that focuses on intentionally-manufacture asymmetric

3. This is the case of cutting-edge Intel processors such as the Intel
Core i7 [24] processor and the Single-chip Cloud Computer (SCC) [25].
An example of processor supporting core-level DVFS is the AMD
Opteron “Barcelona” processor. This processor allows each core to
operate at a different frequency, but the voltage must be no lower
than that required by the core operating at the highest frequency.

systems is discussed in Section 5. The authors of [29]
explore algorithms that reduce power consumption in
the presence of heterogeneity, such as first utilizing the
least power-hungry cores, and mapping the most power-
intensive threads to the least power-hungry cores. They
also explore algorithms that improve performance in
the presence of core frequency variation such as first
utilizing cores that support the highest frequency or
mapping high-IPC threads to high-frequency cores. Al-
gorithms that optimize performance under the constraint
of a power budget are explored as well. Having first
mapped high-IPC threads to high-frequency cores they
meet power budget constraints by applying DVFS to
cores in a round-robin fashion, using a global linear
optimization solution or simulated annealing.

Shin and Kim [30] consider the problem of construct-
ing conditional task graphs for real-time applications,
mapping the tasks to the available cores, and setting the
DVFS for each core to just meet the timing deadlines
while consuming the minimal amount of power. Freh
et al. [31] propose a multithreading library that uses
online performance counters as well as a sophisticated
performance/energy prediction model to decide on the
optimal number of threads to run as well as the number
of threads to map to each core to optimize the energy-
delay product (EDP) for every phase of execution.

Kadayif et al. [32] take an interesting approach to the
mapping / energy optimization problem. The authors
make the observation that when the iterations of a nested
loop are parallelized to be executed by multiple threads
on multiple cores the amount of work that the different
threads have to do can vary significantly. To demonstrate
this issue consider a nested loop where the outer for loop
iterates (1 < j < 1000) and the inner for loop iterates
(j < k < 1000). Suppose this loop is divided between
two threads such that all iterations with j < 500 are done
by thread A and all other iterations are done by thread
B. Because the inner loop is conditional on the value of j
thread A has nearly twice as much work as thread B. In
order to keep synchronization simple it would typically
be the case that no further work will be scheduled until
all the threads executing the same loop have finished.
As a result, the core that executes thread B will be idle
while thread A finishes. To compensate for this wasteful
scenario the authors propose compile-time support that
will estimate the workload assigned to each core (in a
parallelization of nested loops scenario) and apply DVFS
to the cores with less work assigned to them such that
all threads will finish at roughly the same time. This
makes each core consume the minimal energy possible
to get its portion of the loop done, while keeping the
execution time for the whole loop unchanged.

3.4 Integrating Contention Awareness into En-
ergy/Power Solutions
As mentioned earlier, shared resource contention is a
serious and well documented problem in chip mul-
ticore processors [33]. The issue stems from the fact
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that the cores of the CMP are not fully independent
processors but rather share resources such as the Last
Level Cache (LLC), prefetching hardware, the memory
bus and DRAM memory controllers. Some researchers
have measured that threads can slow down by hun-
dreds of percent when competing for these resources
with other threads on neighboring cores as compared to
running alone on the machine. There has also been sig-
nificant research effort on mitigating the negative effects
of shared resource contention. Solutions ranging from
hardware-based cache partitioning or DRAM scheduling
to contention-aware OS thread schedulers have been
explored. In this subsection we survey energy-cognizant
scheduling solutions that take into account the negative
effects of shared resource contention.

There have been three distinct branches of research
on the issue of shared resource contention in CMPs
in the context of power/energy scheduling. Kondo et
al. [34] use DVFS to mitigate shared resource contention
and provide fairness. Takagi et al. [35] and Watanabe
et al. [36] show how combining contention-mitigation
techniques with power/energy scheduling leads to bet-
ter solutions. Dhiman et al. [37] show that using purely
contention-mitigation techniques also significantly re-
duces energy consumption.

The work by Kondo et al. [34] addresses the problem
of shared resource contention, in particular memory bus
contention, affecting different threads differently and
hence distorting fairness. The authors define a thread’s
performance degradation as the ratio of instructions per
second (IPS) with contention versus the IPS without con-
tention. They define the unfairness between two threads
as the difference in the performance degradation of these
two threads. With the goal of minimizing the unfairness
between threads sharing resources they employ the en-
ergy/power minimizing technique of DVFS to throttle
the core running the more aggressive thread. In the
proposed scheme, on every cycle they record the number
of outstanding cache misses for every core, as well as the
IDs of the cores whose misses are being serviced in that
cycle. Using this information, the authors calculate the
number of cycles that each core (with the corresponding
thread on it) has delayed every other core. If the delay
value between two cores is larger than a predetermined
threshold then the offending core is throttled (using
DVFS) to lessen its ability to impede the progress of
others. By raising and lowering the frequency-voltage
settings for cores in response to biased usage of shared-
resources the authors improve fairness in a CMP.

While Kondo et al. [34] use DVFS as a tool to improve
fairness, Takagi et al. [35] and Watanabe et al. [36] argue
that in order to use DVFS effectively as a power reduc-
tion technique on a CMP, shared resource contention
must be first controlled by other means. If one of the
threads gains greater access to the shared resources then
it becomes necessary to compensate the other thread
with a higher DVFS setting so that it still meets its
performance deadlines. The power model derived in [36]

reveals that the power consumption of the entire CMP
is minimized if the frequency setting for every core is
equal. In order to achieve this, the authors implement
a priority control mechanism for access to the shared
memory bus. Power optimization is then achieved by
controlling both the priority of memory accesses of the
cores as well as the corresponding DVFS levels. The
work by Takagi [35] expands on [36] by also considering
shared LLC contention. Along with priority control for
the memory bus and setting DVFS such that the deadline
is just met, [35] also partition the LLC among the com-
peting threads based on stack distance profiles for these
threads. Stack distance profiles are a compact summary
of a thread’s memory re-use pattern that can be used
to predict the number of cache misses and therefore
the expected performance of the thread with different
amounts of cache space available to it. The downside of
stack distance profiles is that, they cannot be obtained
dynamically online for the majority of commercially
available processors.

The work presented by Dhiman et al. [37] is highly cor-
related to work done on contention-aware CMP thread
level schedulers. Studies such as [33], [38], [39], [40], [41],
[42], [43], [44], [45] have used a myriad of different tech-
niques to decide which thread-to-core mappings mini-
mize shared resource contention. A common conclusion
of these studies on contention-aware scheduling, was
that a heterogeneous workload, one consisting of both
compute- and memory-bound applications, is found to
perform the best if different types of applications are
paired together as opposed to when the same type of
applications are paired together. Dhiman et al. achieve
similar conclusions but stands out in that the stated goal
of their work [37] was power/energy minimization. The
biggest difference is that while the schemes presented
in [33], [38], [39], [40], [41], [42], [43], [44], [45] separated
applications in order to achieve higher performance, the
algorithm proposed by Dhiman [37] does so to minimize
power consumption. The other noteworthy difference
is that Dhiman et al. [37] consider not individual ap-
plications being mapped to cores, as was done in all
the contention-aware scheduling studies cited, but rather
Virtual Machines (VMs) being mapped to Physical Ma-
chine (PMs). However, since the authors only execute
one benchmark per VM and the benchmarks are from
the same benchmark suites that were used by the major-
ity of the contention-mitigation studies, the results are
similar. The authors found that when memory-intensive
applications (VMs) are executed on the same PM per-
formance significantly degrades resulting in longer exe-
cution times, which translates into higher energy use.
The finding that memory-intensive applications suffer
performance degradations and prolonged run times
matches the conclusions reached in [33], [38], [39], [40],
[41], [42], [43], [44], [45]. Another notable observation is
that PMs loaded with compute-bound VMs will draw
significantly more power (since compute bound appli-
cations are more power-hungry) than PMs loaded with
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memory-bound VMs leading to the undesirable effect
of a power imbalance between the PMs. The authors
of [37] propose a VM management utility called vGreen
which schedules the VMs to the PMs in such a way
as to balance the MPC (misses per cycle), IPC, and
CPU-utilization across the PMs. Doing such balancing,
which boils down to scheduling a heterogeneous mix of
compute- and memory- bound VMs to each PM, resolves
the power imbalance issue but more importantly reduces
shared resource contention between the VMs facilitating
a faster execution time and a reduced energy usage.

3.5 Summary
The manufacturers of modern processors are well aware
of the need and desire to reduce power consumption
of computing tasks as evidenced by the complex logic
present ubiquitously on contemporary architectures to
bring components into a low power state (DPM) or
throttle processing power (DVFS). Ironically this logic,
although available, often goes unused since hardware
capabilities alone are insufficient and need to be paired
with a decision mechanism which will determine when
and by how much to invoke these features. The OS
scheduler is a natural location to place such a decision
mechanism as supported by the work surveyed in this
section. The most obvious task that the scheduler must
perform is to decide which components can be throttled
and to what extent. One example is throttling cores
running threads which are constantly blocked waiting
on memory access. Such threads are prime candidates for
throttling since they experience minimal slow downs at
lower frequencies and hence offer pure energy savings.
Complexity is encountered because the scheduler must
be able to measure the memory usage characteristics
of threads in order to apply this heuristic as well as
deal with situations where threads are only partially
memory-bound. Significant further complexity arises be-
cause cores, even in explicitly symmetric, systems are
not necessarily homogeneous. Variations in the manu-
facturing process lead to cores with different power-
dissipation properties and different maximum frequen-
cies that they can support. This provides the energy-
cognizant scheduler with the additional task of mapping
contexts of execution to physical resources based on
the properties of these physical resources on top of the
original task of throttling the physical resources. Yet
further complexity is added to the problem because of
shared resource competition among threads scheduled
to “neighboring” cores of a multicore processor. Shared
resource contention can lead to significant performance
losses which will directly translate into unnecessary
energy expenditures. As such, a comprehensive energy-
cognizant scheduler must be shared-resource aware and
find a mapping of threads-to-cores as well as DVFS
settings for these cores which minimizes shared-resource
contention, accounts for the potential heterogeneity of
cores, and satisfies some energy-performance metric.

4 THERMAL-AWARE SCHEDULING

Computer chips like any other manufactured good have
a temperature range within which they were designed
to operate. When that range is exceeded the materials
are stressed beyond their tolerance point and can melt,
break, burn, or otherwise stop working resulting in a
partial or complete failure of the chip. Such situations
are called catastrophic failures and modern processors
have technologies built into them, like AMD’s Multi-
Point Thermal Control or Intel’s Adaptive Thermal Mon-
itor, to avoid these occurrences. These failure-avoiding
techniques can be broadly described as reactive thermal
management. The processor is designed to handle the
heat produced by a “typical workload”; however, cer-
tain workloads can more aggressively use the processor
resources generating more heat than can be dissipated,
leading to dangerous overheating. These situations are
detected via temperature probes strategically located
within the chip and when the temperature exceeds
a manufacturer-predetermined threshold the thermal
management techniques are activated. Thermal manage-
ment techniques can lower the frequency and voltage
of the processor, apply clock gating (duty cycles) to the
processor, or halt it altogether. This is done until the
temperature falls back below the acceptable threshold, at
which point normal operation is resumed. Because these
techniques are activated only once a temperature-critical
situation has been reached and because they do nothing
to prevent reaching such situations, they are classified as
reactive techniques.

The nature of reactive thermal-management tech-
niques that lower temperature by reducing processor
capabilities has the potential, if active for long dura-
tions, to have a significantly adverse effect on thread
performance. Much research has been done on proactive
thermal management that takes preventative measures,
which themselves have minimal or no performance
impact, ensuring that critical temperatures that would
trigger costly hardware reactions are never reached.
Proactive thermal management relies on the old adage
“a stitch in time saves nine”.

Thermal crises leading to component failure are the
most dramatic but not the only examples motivating the
need for thermal management. Temperature gradients
can be created in both space and time; they will stress
the underlying materials and dramatically decrease the
expected lifespan of the device [46]. Temperature gra-
dients in space arise because different threads heat the
processor differently. A thread that is very compute-
bound will heat the processor by constantly issuing
instructions, much more than a memory-bound thread,
which will be stalled for most of its execution time. If
such different threads are scheduled on adjacent cores
then the resulting temperature gradient will be harmful
to the chip’s long-term durability. Similarly, if a core
is frequently switched between hot and cold threads
then the resulting temporal temperature gradient will
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not be good for the components either. Proactive ther-
mal management takes these effects into account as
it tries to avoid hot spots and temperature gradients,
by distributing the temperature as evenly across the
chip as possible. Furthermore, temperature is directly
proportional to leakage current, and so techniques that
minimize the overall temperature are highly beneficial
in terms of energy/power savings as well.

In this section the proactive techniques are further
broken down into static techniques that determine the
scheduling solution prior to the start of execution, and
dynamic techniques that work throughout the execution
of the workload to make improvements. Dynamic tech-
niques are further divided into those that use tem-
perature measurements directly available from on-chip
sensors and those that construct thermal models to
predict future temperature data in order to make policy
decisions. We conclude the section with a discussion
of how different thermal management strategies can be
integrated in order to provide more robust solutions.

4.1 Static Thermal Management
One subset of proactive thermal-aware scheduling al-
gorithms relies on static scheduling to meet predefined
thermal goals. The static scheduling problem is best
described by breaking an application into tasks, where
each task is a function or a set of functions. The entire ap-
plication is then represented as a Directed Acyclic Graph
(DAG) of computation with the vertices representing the
tasks and the directed edges representing the precedence
relationships between the tasks. The problem becomes
scheduling these tasks to the available cores such that the
timing constraints for the tasks are met, the precedence
constraints are met, as well as some thermal goal, such
as keeping the max temperature below a particular
threshold, is also met. Since the scheduling decisions
are made once prior to the start of the run rather than
dynamically during execution, these solutions are called
static. Different types of algorithmic solutions have been
proposed to tackle this problem.

Zhang et al. [47] derive an optimal solution to the
static thermal-aware scheduling problem. They show
that the problem of choosing a frequency at which to run
each task as well as choosing the length of the low-power
period for the processor in-between tasks such that
the predefined temperature threshold is not exceeded
and that the entire workload completes as quickly as
possible is NP-hard. They show a dynamic programming
(DP) optimal solution that runs in pseudo-polynomial
time and an approximate fully polynomial time solu-
tion to this problem. Coskun et al. [48] use integer
linear programming (ILP) to find scheduling solutions
(mappings of tasks to cores as well as choosing each
task’s frequency/voltage setting) such that one of the
following four metrics is optimized: the minimization of
hot-spots (where one core or portion thereof significantly
exceeds average chip temperatures), the minimization of

hot spots and thermal gradients (where there is a large
temperature discrepancy between on chip resources),
balancing energy load across the cores, or minimizing
the total energy consumed.

Chantem et al. [49] use mixed integer linear program-
ming (MILP) to decide on a mapping of tasks to a
floorplan of cores as well as an ordering of tasks on each
core such that all precedence and timing constraints are
met while the preset max temperature is not exceeded.
It is a well established fact that the rate at which cores
cool depends on their location within the floorplan of the
die. If cores are near edges they can more easily dissipate
heat via those edges than cores which are in the middle
of the chip. Chantem et al. use the cores’ positions within
the floorplan as part of its thermal-aware solution [49].

4.2 Non-Predictive Proactive Thermal Management
The next subset of thermal-aware scheduling solutions
that we consider are dynamic: they are active through-
out the execution of the workload. These solutions are
proactive since they attempt to facilitate favorable ther-
mal conditions in the future. They are non-predictive
in a sense that they rely on temperature measure-
ments/estimations of the current chip state and do not
create thermal models to forecast future temperatures.

Although modern chips come equipped with thermal
sensors that can be read by software, these readings
are subject to noise and other reliability issues; further-
more, the sensors are limited to only certain locations
within the chip [50]. As such, preprocessing temperature
readings prior to utilizing them in any scheduler can
increase its accuracy and effectiveness. Sharifi et al. [50]
propose a scheme to make online temperature measure-
ments significantly more accurate. Offline they construct
a thermal equivalent RC (Resistor-Capacitor) model for
the circuit and reduce its complexity to make the model
manageable. They apply Kalman filtering calibrated with
sensor readings until a steady state is reached. The
model is then usable online to convert the unreliable
sensor data into reliable thermal readings.

Choi et. al [51] propose a set of hot-spot mitigation
techniques incorporated into the OS scheduler and eval-
uate the effectiveness of these techniques on an IBM
Power 5 processor. The foundation of their proposals
lies on two observations: (1) functional units’ power
and temperature profiles are tightly related to per-unit
utilization, in view of advanced fine-grained clock gating
technologies incorporated into modern processors, and
(2) because the OS is already performing thread schedul-
ing with a time granularity much smaller than rise-
and fall-times on-chip temperatures, thermal mitigation
techniques can be implemented at the OS level with
low overhead. Their experimental evaluation shows that
due to advanced clock gating in their target processor,
exploiting the temporal and spatial heat slack when
making scheduling decisions has a significant effect on
the processor’s temperature.
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One of the key tools in proactive thermal management
is the movement of threads from one core to another;
usually from a hot core to a colder core. However, if mi-
gration of threads is explicitly disallowed, the throttling
strategy proposed by Rajan and Yu [52] is mathemati-
cally proven to maximize throughput while maintaining
the core temperature below the predefined threshold.
The strategy throttles the core via DVFS to a precalcu-
lated level if the threshold temperature is reached. When
the temperature falls below the threshold, the core is
throttled back up to some maximum level that will not
exceed the threshold. This is shown to be optimal for
maximizing throughput over any other strategy so long
as migration is disallowed. Stavrou and Trancoso[53]
propose thermal-aware scheduling techniques that, al-
though not explicitly restricting migration, focus on as-
signing newly dispatched threads onto cores rather than
moving threads between cores. They propose scheduling
techniques that assign the newly spawned thread to the
coolest core on the chip. A more sophisticated version
looks not only at the temperature of individual cores
but also at the temperature of cores in the neighborhood
around each core as well as the floorplan position of the
core and computes a simple thermal goodness metric
for each core. Further sophistication is added to this
method by restricting scheduling to cores that exceed
a predefined temperature threshold.

Coskun et al. [54] compare scheduling policies very
similar to those proposed in [53] (e.g., mainly sending
ready threads to the coolest core and sending ready
threads to a core which “lives in the coolest neighbor-
hood”) against a more sophisticated technique called
Adaptive Random. Adaptive Random assigns a probabil-
ity of sending a thread to a core based on that core’s
past thermal history. A sliding window approach is
used to keep track of the core’s thermal history. At the
end of each measuring period, the core’s probability
of receiving a thread is incremented if its temperature
never exceeded a predefined threshold and decremented
otherwise. The destination core for a thread is decided by
generating a random number and determining the core
to whose id that random number corresponds. The core’s
probability value as maintained via the sliding window
method directly determines its likelihood of being the
recipient of the thread. Thus cores with a better thermal
history (those that spent more time below the threshold
temperature) are more likely to be assigned threads.

Almost ubiquitously, thermal management algorithms
try to ensure that the core is heated as little as possible
while still performing an acceptable amount of work.
Gomaa et al. [55] propose a strategy which is radically
unique in that it actually seeks to more aggressively
heat the cores. Although initially such an idea may
seem counterintuitive there is a beautiful logic behind
it: the authors argue that whether only one compo-
nent of the core becomes overheated or ten components
become overheated, the time for the core to cool will
be roughly the same whether regardless of the num-

ber of overheated components. However, the workload
that heated ten components within the core rather than
only one most likely got significantly more work done
and yet suffered the same cooling penalty as the less
efficient workload. Gomaa put this radical theory into
practice using a hyper-threading enabled CMP [55]. The
proposed algorithm has two parts Heat and Run Thread
Assignment (HRTA) and Heat and Run Thread Migration
(HRTM). HRTA is responsible for pairing threads onto
the same core with complementary resource demands
such that they will heat different components within
the core. The authors attempt to pair threads based on
two main criteria: integer with floating point, and high
IPC with low IPC. If thread pairings based on these
broad criteria are not available then HRTA looks at more
specific resource usage such as the cache and the ALU.
They also seek to balance the IPC evenly across all cores
to lengthen the times between cooling periods. Once a
core has reached its threshold temperature, HRTM is
responsible for migrating threads away from the over-
heated cores created by HRTA, allowing them to cool. It
should be noted that the scheme proposed in [55] works
only if the number of threads is smaller than the number
of thread contexts available in the CMP, since HRTM
relies on the existence of cooler, not overloaded, cores to
migrate threads from the hot overloaded cores.

The work by Zhou et al. [56] analyzes thermal man-
agement issues on 3D processors, which consist of sev-
eral vertically-stacked dies coupled with a dense, high-
speed interface. Recent research has shown that 3D die
stacking is an exciting new technology that increases
transistor density and, at the same time, enables a
significant reduction of interconnect both within a die
and across dies in a system [57], [58]. In spite of these
benefits, 3D die stacking gives rise to an increased power
density per unit volume. A novel scheduling algorithm
is proposed by Zhou et al. [56] to address this issue
by taking into account the thermal conduction in the
vertical direction. Based on the observation that a core
in one layer could become hot because of a high power
task running on the same vertical column but a different
layer, the proposed scheduler performs thread-to-core
assignments for sets of cores that are vertically aligned
(super cores) rather than based on the temperatures of
individual cores. Their experimental evaluation reveals
that this scheduling technique significantly reduces the
number of thermal crises and, so, it delivers better
performance than conventional techniques designed for
2D processors. Furthermore, the authors argue that hard-
ware techniques aimed to dramatically reduce a core’s
temperature upon a thermal emergency must be en-
gaged in a per-core-stack fashion, and more specifically
must be targeted to the core that contributes more sig-
nificantly to increasing the temperature in this stack.

4.3 Predictive Proactive Thermal Management
This next subset of thermal-aware scheduling techniques
is similar in both goals and strategies to the previous
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subset except that instead of relying on temperature
measurements from on-chip thermal sensors to drive
decisions these management techniques incorporate so-
phisticated models to predict future core temperatures.
The downside of this approach is that it adds significant
complexity for the implementation both in terms of the
code needed and the calculation time. The upside is that
the scheduler becomes significantly more powerful being
able to anticipate thermal crises as well as take actions
that not only mitigate problems observed at the moment,
but also reduce the probability of future crises.

Work by Yeo et al. [59] is a perfect example of how
temperature predicting models can extend the thermal-
aware policies described earlier. The authors create a
two-phase prediction model on the observation that
the rate of change of temperature for an application
is proportional to the difference between its current
temperature and its steady state temperature (the tem-
perature that it would acquire if running in a continuous
loop). The two phases correspond to the Application Based
Thermal Model (ABTM) and the Core Based Thermal Model
(CBTM). The ABTM predicts the thread’s future tem-
perature using a recursive least squares method while
CBTM relies on a simple differential equation, the core’s
initial temperature, the application’s steady state tem-
perature, and the observation above to predict the core’s
future temperature. The overall predicted future temper-
ature for the thread running on the core is computed as
a weighted sum of the predicted thread and predicted
core temperatures. The obtained predicted temperatures
are then used to perform thermal management. More
concretely, if the predicted temperature of a certain
thread-core-combination exceeds the defined threshold
then that thread will be migrated to what is predicted
to be the coolest core. It is easy to see how there is a
clear advantage in performing such a migration without
having to actually reach the threshold temperature.

A much more involved technique called Autoregres-
sive Moving Average (ARMA) is used by Coskun et
al. [60], [61], [62] to predict future temperatures. Un-
der the assumption that temperature follows a stable
distribution with a fixed mean and variance the au-
thors model variations in temperature as a stochastic
process. Offline they fit the collected data to a progres-
sively higher order model until the error falls below
a specified threshold thus obtaining the model param-
eters and residuals. The model residuals are checked
for randomness ensuring no autocorrelation. An online
adaptation is used to ensure that the model still describes
the current workload. Workload changes are detected
by applying a sequential probability ratio test (SPRT),
i.e. statistical hypothesis testing on the distribution of
model residuals. The model is adjusted on the fly to
compensate for workload changes. The ARMA model
allows thread temperatures to be forecast into the future.
The authors explore using the predicted thread temper-
atures in several thermal-aware scheduling algorithms.
Proactive-Migration moves threads away from cores that

are predicted to become excessively hot. Proactive-DVFS
reduces the frequency/voltage of a core if its tempera-
ture is predicted to exceed a certain threshold. Finally,
Proactive-Thread Balance (PTB) uses the ARMA results
to migrate threads between the run queues of different
cores to even out the temperature across the chip.

Although ARMA has been shown to be effective its
complexity makes it an unattractive option for an on-
line implementation. Azoub and Rosing [63] propose a
more cost-effective prediction model based on the band
limited nature of the temperature frequency spectrum.
The proposed Band-Limited Predictor (BLP) requires no
training phase and is able to accurately predict future
events based on past events for a band limited signal
(one which takes values only from a known range). The
prediction results from this model are used in a similar
fashion to those of other models mainly to migrate
threads from cores predicted to exceed the temperature
threshold to those predicted to be cold. The model is
also used to allocate newly spawned threads to cores
predicted to be cold.

Kumar et al [64] propose a thermal model that differs
from the others in this section in that it does not seek to
predict the future temperature of threads but rather to
separate the temperature contributions made by the dif-
ferent threads time-sharing the same core. The approach
relies on observing how much each thread uses various
processor resources and correlating that to a temperature
metric for those resources. More specifically, for each
of the threads 22 performance metrics are dynamically
collected online corresponding to the activity of different
microarchitectural components of the processor. Offline
partial least squares regression analysis is used to gener-
ate the coefficients necessary to convert the performance
counter values into temperate values. The model is
periodically, in a limited way, adjusted online during
execution. The model is used to dynamically predict
the temperature of individual threads on the core. If
a thread’s predicted temperature exceeds a predefined
threshold then the proactive software module will use
the priority mechanism available inside the Linux OS
to limit the amount of time that that thread runs on
the core. The size of the time slices allocated by Linux
to a particular thread when multiplexing a processor
between different threads depends on the priority level
of that thread. The smaller the priority the longer the
time slice. By decreasing the priority of “hot” threads the
authors ensure that they run less, lowering the overall
temperature of the core. In the method proposed in [64],
if the proactive adjustment of thread priorities does not
prevent overall core temperature from surpassing the
predefined threshold then a reactive hardware technique
is triggered, which cools the core by clock modulation.

By means of a comprehensive experimental analysis,
the work by Yang et al. [65] showcases two limitations
of Kumar’s approach [64]. First, given that hot jobs
are executed less frequently than cool jobs, cool jobs
typically finish earlier than hot jobs. Putting off the
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execution of hot jobs may lead to a high number of ther-
mal emergencies when the cool jobs are exhausted, thus
causing a significantly adverse effect on performance.
Second, Kumar’s scheduler is inherently unfair since it
tends to allocate less CPU time to hot jobs and more
to cool jobs. In [65], a scheduling algorithm that is not
subject to these limitations is presented. The algorithm
follows the strategy of keeping the temperature right
below the threshold but without exceeding it, based on
the observation that this approach increases the heat
removal rate and is less likely to incur thermal emer-
gencies. As the next task to run this scheduler selects the
hottest program that does not increase the temperature
above the threshold; if such job does not exist, the hottest
job is selected to run. The authors derive an elaborated
estimation model that makes it possible for the scheduler
to accurately predict the future temperature that results
from running a particular job in the next time interval.

4.4 Integrating Multiple Thermal-Management Tech-
niques
In this section we discussed a wide variety of thermal-
aware scheduling techniques covering the available lit-
erature on the subject. Each technique was, under cer-
tain circumstances, shown to be effective. Significant
evidence has also been presented showing why thermal
management is a vitally important issue for contempo-
rary and future CMPs. The question that may logically
arise is which method is better and should be adopted in
operating systems by default? However, such a question
is not the right one to ask. These methods are not mutu-
ally exclusive choices. There are positives and negatives
about each method. There are situations and workloads
where some methods work well and others fail and
different circumstances where the roles are reversed.
A promising direction is to combine several thermal
management techniques, combining their strengths.

Some exciting work has already been done in the di-
rection of multi-method thermal management. The work
by Kumar et al. [64], described earlier, uses a proactive
software technique to reduce the time “hot” threads
spend on the processor but also uses a reactive clock
modulation approach to guard against situations where
the first method is insufficient. By default all modern
processors are equipped with hardware based thermal
crisis avoidance techniques like the Adaptive Thermal
Monitor in Intel’s Core i7 chips [24]. Thus any im-
plemented thermal management technique is also safe-
guarded in hardware. Coskun et. al[66] demonstrate how
a static thermal management technique first described
in [48] can be combined with the Adaptive Random
dynamic thermal-management technique introduced in
[54] to improve overall efficiency.

Coskun et. al propose a framework in [67] for com-
bining a variety of thermal management techniques and
choosing the most appropriate one for the given work-
load. They reduce the problem of choosing a thermal-
management technique to the switching experts problem.

The experts are thermal-management policies. The ex-
pert to use during any given period is decided by a
specialist based on a set of rules the specialist has and the
currently measured load on the system. The specialist to
use during any given period is decided using an online
learning method that evaluates the specialists based on
their performance or would-be performance in the past.
The experts considered in [67] were: (1) the default OS
scheduler, (2) DPM, which turns off idle cores after a
fixed timeout, (3) DVFS+DPM, which scales the fre-
quency of cores based on their utilization level and turns
off idle cores, (4) migration, which moves threads from
hot cores to colder ones, and (5) Adaptive Random [54].
The two specialists considered were utility based and
temperature based each of which supports a subset of
experts and decides which expert to use depending on
the total system load.

Donald and Martonosi [68] provide a comprehensive
study of how different thermal management policies
can be used together. They divide the field into three
orthogonal axes. The first axis describes if the policy uses
stop-go (clock modulation) or DVFS. The second axis
describes if the policy is applied globally to the CMP
as a whole or to each core individually. The third axis
describes if a migration policy is used and if so whether
it is based on performance counters or thermal sensors.
All possible permutations of these thermal-management
policies are explored and a matrix showing the through-
put achieved without exceeding a temperature threshold
is derived. A major conclusion of that study was the
value of DVFS which showed a 2.5X speedup in through-
put over stop-go on average.

4.5 Summary
Even the most complex computer chip can still be
thought of as an expensive resistor since it converts
electric current that passes through it into heat. Excessive
heat can damage the chip and turn it into an actual
resistor. To prevent this, modern hardware is equipped
with built-in thermal crisis prevention technologies that
detect that the temperature has gone above an acceptable
threshold and reactively halt or throttle the hardware un-
til the temperature falls below this threshold. Although
effective at avoiding complete melt-downs this reactive
technology has the potential to impede performance and
does nothing to prevent intra-chip thermal gradients,
which can significantly limit the expected lifetime of
these components. Proactive thermal-management per-
formed by the OS scheduler can address thermal crises
before they happen minimizing performance effects as
well as addressing issues like thermal gradients. If the
workload is known a priori it is possible to perform static
thermal scheduling. The workload is broken into tasks,
with dependencies among them captured in a graph. A
schedule is then created by deciding on which tasks will
run on which cores, when and to what degree each of
the cores will be throttled, such that performance is opti-
mized while avoiding any negative thermal effects. Since
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it is typically not the case that the workload is known
a priori less efficient but far more realistic dynamic
proactive-thermal-aware scheduling becomes necessary.
Using filtered or otherwise pre-processed readings from
temperature probes located on the chip, often in con-
junction with other data, such as the floorplan of cores
or thread-performance counters the scheduler decides
on thread-to-core mappings and core throttling to de-
liver peak performance without negative thermal effects.
Further effectiveness but also complexity can be added
to dynamic thermal-aware scheduling by constructing
thermal models to predict future core temperatures and
using these take truly proactive actions.

5 SCHEDULING FOR ASYMMETRIC SYSTEMS
An asymmetric multicore system is defined to include
several cores that expose the same instruction-set archi-
tecture (ISA), but offer different performance, occupy
different size on chip areas and have different power
characteristics. Systems may be built asymmetric by
design [69] – we refer to these as explicitly asymmetric
– or asymmetry may arise as a result of non-uniform
frequency scaling on different cores, or if variations in
fabrication process prevent all cores from running at the
same speed [70]. Explicitly asymmetric systems are also
referred to as single-ISA heterogeneous systems. There is
also another type of heterogeneous systems, where cores
expose different ISA: for example the IBM Cell processor
has one PPE (a general-purpose core) and a number
of SPEs (special-purpose vector processing units). These
systems require primarily compiler support, because
code must be explicitly compiled to run on a particular
core type. As a result, scheduling for these systems
has not been an active area of research, at least at the
time of this writing. Instead, we focus on asymmetric
systems with a uniform ISA. On these systems, a thread
scheduler is essential for maximizing system efficiency.

In explicitly asymmetric systems cores differ in mi-
croarchitecture. There is typically a small number of
fast and powerful cores with complex microarchitectural
features (super-scalar out-of-order pipeline, aggressive
pre-fetching and branch prediction hardware, high clock
speed), as well as a large number of slower and low
power cores. The latter are characterized by simpler
pipelines, slower clock frequencies, smaller areas, and
lower power consumption as compared to the fast cores.
The motivation for this architecture is superior perfor-
mance per watt that can be achieved if the microarchitec-
ture of a core is tailored to the workload. The idea is that
fast cores are better suited for (1) workloads with high
instruction-level parallelism (ILP) that effectively utilize
the fast cores’ advanced features, and (2) sequential
applications or sequential phases of parallel applications.
High-ILP workloads, to which we refer as CPU-intensive
following the terminology adopted in earlier studies,
achieve a greater speedup on fast cores relative to slow
cores, because they utilize fast cores effectively. Low-ILP

workloads, to which we refer as memory-intensive, waste
resources of the fast cores and typically achieve a better
performance/watt when running on the slower cores.
Scalable parallel applications can get good performance
on slow cores, because they are able to spread the
computation across them, while sequential or modestly-
parallel applications need to run on fast cores to get
good performance. We refer to this notion of preferring
certain types of cores for certain types of computation as
specialization. To deliver specialization the system must
match each instruction stream with the type of core best
suited to this stream. This process is typically a part of
thread assignment or scheduling. Therefore, it is typical
to provide specialization by means of asymmetry-aware
thread schedulers.

An asymmetry-aware scheduler would assign threads
to cores so as to deliver specialization: threads that
benefit most from fast cores would be preferentially
assigned to run on fast cores, while other threads would
be relegated to slow cores. Note that most schedulers for
explicitly asymmetric systems assume cores of two types:
fast and slow. Kumar et al. [69] showed that having
only two core types is sufficient to deliver the projected
benefits of asymmetric systems.

The remainder of this section is organized as follows.
Sections 5.1 and 5.2 survey different scheduling algo-
rithms aimed to optimize the overall system efficiency on
AMPs for workloads consisting of single-threaded and
multithreaded applications, respectively. Section 5.3 is
devoted to exploring schedulers that exploit less conven-
tional types of specialization (i.e.: not directly related to
the workload’s ILP and parallelism). Section 5.4 focuses
on asymmetry-aware schedulers pursuing goals other
than optimizing for the overall system performance,
such as fairness. Finally, Section 5.5 introduces another
category of schedulers targeting AMPs where asym-
metry was introduced as a result of variation in the
fabrication process.

5.1 Addressing single-threaded applications
The biggest challenge in designing an asymmetry-aware
scheduler for multi-application workloads consisting of
single-threaded applications is to determine to what de-
gree the throughput of individual processes (or threads)
will improve when running on a fast core relative to
a slow core. Throughput is usually measured in terms
of instructions per second (IPS), and the relative im-
provement is often referred to as the speedup factor or
relative speedup. Schedulers proposed by Kumar et al. [71]
and Becchi and Crowley [72] used the most natural
and straightforward approach for determining relative
speedup. These schedulers simply ran each thread on
each type of core and measured its IPS in both cases.
Once IPS on both core types was known, the scheduler
computed the ratio of fast-core IPS to slow-core IPS.
Threads with a higher ratio would be then assigned
to run on fast cores and threads with a lower ratio
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would be assigned to slow cores. (Kumar also proposed
another algorithm based on sampling of entire thread
assignments – we will discuss this algorithm later.)

While this approach was intuitive and simple, it did
not work well in practice. The problem was rooted in
phase changes. If a thread changes its phase during the
period when the scheduler performs a measurement of
its IPS on fast and slow cores, the resulting IPS ratio
may be estimated incorrectly. Suppose, for instance, that
a thread had a naturally high IPS while it was running on
a fast core, for example because it was in a CPU-intensive
phase. Then, when it was moved to a slow core it entered
a very memory-intensive phase and so its IPS dropped.
The scheduler would register a very high IPS on the fast
core and a very low IPS on the slow core. The resulting
IPS ratio would be high, signaling the scheduler that
the thread should be assigned to the fast core. In reality
though, the thread has entered a memory-bound phase
and so assigning it to a fast core is counterproductive.
(As we mentioned earlier, memory-bound threads use
fast cores inefficiently, because they frequently stall the
pipeline and make poor use of the advanced microarchi-
tectural features.) Another problem with this algorithm
was that scarce fast cores were in much higher demand
than slow cores, because the scheduler often needed to
re-measure the IPS of one thread or another on a fast
core. This led to load imbalance and hurt performance.

These problems were first discovered by Shelepov et
al. [18]. This group was the first to implement algorithms
proposed by Kumar and Becchi on a real system. Kumar
and Becchi evaluated their schedulers on a simulator,
where it was assumed that an OS scheduler could mea-
sure IPS on different core types instantaneously. As a
result, the problem related to phase changes did not
surface in this simulated environment. Shelepov, on the
other hand used a real system. Since actual asymmetric
systems were not yet built at the time that the research
surveyed herein was conducted4, asymmetry had to be
emulated by setting cores of a symmetric machine to run
at different frequencies. Kumar’s and Becchi’s decision
to use a simulator was certainly well justified: they were
able to model the microarchitectural details of asymmet-
ric systems that researchers relying on frequency scaling
could not. However, lack of realistic details in the model
of the OS scheduler’s actions concealed some problems
with these algorithms.

Shelepov et al. addressed the aforementioned prob-
lems via a new concept of architectural signatures [18],
[73]. An architectural signature is a compact summary
of the program’s architectural features. It can be ob-
tained via binary instrumentation on any machine of a
given architecture (e.g., x86) and then used on any sys-
tem with that architecture, regardless of the differences
in microarchitecture. The idea is that the architectural
signature would be obtained during the development

4. ARM announced its first asymmetric processor, combining Cortex-
A7 and Cortex-A15 cores, known as the big.LITTLE configuration, in
October 2012.

process and embedded in the application’s binary. Then
at runtime the scheduler would interpret this signature
to predict each program’s relative speedup on cores of
different types. The signatures evaluated in Shelepov’s
paper were constructed using the stack-distance profile
of the program [74], which could be used to estimate this
program’s cache misses for a last-level cache of arbitrary
size and associativity. Predicted cache miss rates for a
number of realistic cache configurations comprised the
contents of the architectural signature. At runtime, the
scheduler used the miss rate for the target architecture
to predict the relative IPS of the thread on cores running
at different frequencies. A scheduler relying on archi-
tectural signatures was immune to problems discussed
earlier, because it did not need to run each thread on
each core type to determine its IPS ratio. In fact, Shelepov
et al. showed that a scheduler based on architectural
signatures delivered better performance than a scheduler
requiring dynamic IPS measurements.

While Shelepov’s scheduler addressed the problems
with earlier schedulers and resulted in simple and ele-
gant OS implementation, it had limitations. The prob-
lem was that the architectural signature is inherently
static. Therefore, it does not take into account dynamic
behavior of the program, such as the variation in the
IPS due to phase changes. Furthermore, it is difficult to
make the signature account for differences in program
inputs, which can be known only at runtime. Limita-
tions of architectural signatures were overcome by other
researchers, who found methods to determine relative
speedup without needing to run threads on each core
type and without relying on architectural signatures. The
idea proposed by Saez et al. [17] was a straightforward
and effective extension of Shelepov’s model: the IPS
ratio was predicted using miss rates that are measured
dynamically on line, as opposed to relying on the miss
rates delivered in the architectural signature. Miss rates
can be measured on any core on which the thread runs,
and so there is no need to sample performance on
different cores. Based on this idea, Saez developed the
Speedup-Factor driven scheduler.

Koufaty et al. [75] concurrently with and indepen-
dently from Saez et al. [17] developed a similar model.
Their asymmetric system was different from that used
by Saez. While Saez, like many researchers, emulated
asymmetry by setting the cores of a real system to
run at different frequencies, Koufaty et al. were able to
configure their system such that one core had a smaller
retirement width than another core. They were able to
do this thanks to proprietary tools that were available to
them at Intel. Koufaty also used hardware performance
counters to determine the relative speedup, but unlike
Saez’s model, his model did not seek to predict the
speedup precisely, but rather find performance metric
that had a positive correlation with the speedup. On
their experimental architecture, Koufaty determined that
the rate of off-core requests (i.e., last-level cache accesses
and misses) had a negative correlation with the speedup
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on the fast core. This finding is similar to that of Saez
et al., who determined that a high last-level cache miss
rate is a key factor in determining the relative speedup.

5.2 Addressing multithreaded applications
The schedulers discussed in the previous section ad-
dressed only a single type of specialization: where fast
cores were dedicated to programs that are likely to
use those cores efficiently. Another group of schedulers
addressed the second type of specialization: where fast
cores were dedicated to sequential applications and
to sequential phases of parallel applications. Hill and
Marty demonstrated that when this specialization policy
is followed, asymmetric systems are likely to always
outperform symmetric systems as long as the length of
parallel phase constitutes more than 5% of total execu-
tion [76]. To accomplish these performance benefits, sev-
eral researchers designed schedulers that preferentially
scheduled sequential applications and sequential phases
of parallel applications on fast cores, while assigning
threads running parallel phases to slow cores [77], [78].
Speedups resulting from this technique as compared to
asymmetry-unaware schedulers reached the vicinity of
50%. The challenge in implementing these schedulers
was to detect sequential phases in those applications that
do not block their threads when they run out of work. To
accomplish that, Saez et al. proposed a new system call
interface allowing threads to notify the operating system
when they enter an idle state [77].

Another challenge in implementing these schedulers
was to mitigate migration costs, which could be quite
substantial if threads switched phases often. Saez et al.
showed that it is difficult to completely conceal migra-
tion overhead when fast and slow cores are located in
different memory hierarchy domains (e.g., when they
do not share the last-level cache). But if the asymmetric
system is built such that fast cores share the memory-
hierarchy domain with at least several slow cores, mi-
gration overheads become negligible [77].

5.3 Other types of specialization
While most asymmetry-aware schedulers were con-
cerned with two types of specialization (related to
the workload’s ILP and parallelism), a few researchers
looked at less conventional types of specialization.
Mogul et al. proposed using slow cores in asymmetric
systems for executing system calls [79], since system
calls are dominated by code that uses fast and powerful
cores inefficiently. They modified an operating system
to switch the execution to a less powerful core when a
thread enters the system call. This strategy had mixed
results, but overall delivered better energy efficiency.
Mogul also pointed out that workloads that execute
OS-like code (e.g., code dominated by interrupts and
frequent control transfers, such as web servers) are also
good candidates for running on slow cores. Inspired by
this idea, Kumar and Fedorova [80] proposed binding

the controlling domain dom0 of a virtual machine moni-
tor Xen to slow cores. They also observed that workloads
dominated by activity in dom0 are less affected by vari-
ations in the speed of the core than other workloads.

5.4 Fairness and performance stability
Most asymmetry-aware schedulers were targeted at op-
timizing overall system efficiency. Nevertheless, there
have been a few studies exploring additional challenges
that arise in the context of AMP systems, such as deliv-
ering fairness or ensuring stable execution times.

One of the first schedulers addressing these problems
was described by Li et al. [81]. In Li’s scheduler fast cores
received a higher load than slow cores. This was done
to account for the fact that fast cores perform more work
per unit of time. Li’s scheduler did not take into account,
however, that different threads experience different rates
of speedup when running on a fast core relative to
slow cores. As a result, under certain workloads it was
possible to run into a situation where threads assigned
to fast cores make slower progress than threads assigned
to slow cores. Li’s scheduler implicitly addressed fair-
ness: threads running on fast cores would accomplish
more work per unit of time than threads running on
slow cores, but they would receive a smaller share of
CPU time because fast cores were given a higher load.
On the other hand, if the number of threads in the
workload did not exceed the number of cores, Li’s algo-
rithm would not deliver fairness. To address fairness in
this scenario, the scheduler needs to periodically rotate
threads among fast and slow cores in a round-robin
fashion. Such asymmetry-aware round-robin scheduler
was described by Fedorova et al. [82] and in another
article by Saez et al. [77]. Balakrishnan et al. described
a simple asymmetry-aware scheduler that ensured that
the fast core does not go idle before slow cores [83]. De-
spite its simplicity the scheduler significantly improved
performance stability of realistic workloads. Kazempour,
Kamali and Fedorova also addressed fairness and pri-
orities on asymmetric systems, but their scheduler was
implemented in a virtual machine hypervisor [84].

5.5 Addressing process variation
Another category of schedulers addressed systems
where asymmetry was introduced as a result of variation
in the fabrication process. Process variation causes cores
to run at varying frequencies and consume varying
amounts of power [70]. Therefore, the assumption that
there are only two types of cores no longer applies. Other
than that, the problem is similar to that on explicitly
asymmetric systems: how to match threads to cores so
as to minimize some global function, for example delay
or energy/delay product.

Three algorithms addressing this problem were de-
scribed by Winter and Albonesi [85]. Both algorithms
relied on sampling performance of threads on each (or
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most) core types. The first algorithm, the Hungarian al-
gorithm, was used to solve weighted bipartite matching
problem and relies on an N × N matrix, where N is
the number of cores and threads. An entry (i, j) in the
matrix correspond to the cost of running a process i

on core j. In this case, cost was represented by ED2

(energy-delay-squared). Rows and columns of the matrix
were manipulated according to the algorithm to find
an assignment that minimized total ED2. The second
algorithm considered by Winter and Albonesi relied
on global iterative search. The scheduler tried various
randomly chosen thread assignments and then used the
one with the lowest total cost. This strategy was similar
to one of the algorithms proposed by Kumar et al. [71]
for explicitly asymmetric systems. The final algorithm
explored by Winter and Albonesi used local search. Local
search is different from global search in that it probes
assignments that are “close” to the initial one in the
search space – for example an assignment that can be
derived from the initial one with a small number of
swaps in the assignment of threads. The Hungrarian
algorithm turned out to perform the best, but its com-
plexity was O(N3) in the number of cores. This made
it an unlikely candidate for systems with hundreds or
thousands of cores. Local search, on the other hand, had
a lower complexity (O(N)), but performed similarly to
the Hungarian algorithm.

Algorithms designed by Winter and Albonesi re-
quired sampling of threads’ performance on different
core types, and in particular the Hungarian algorithm
required that each thread is sampled at each frequency.
As other researchers have shown, this requirement may
cause problems, such as incorrect speedup estimates and
load imbalance [18]. Further, on systems where asym-
metry is caused by process variation fabrication and
the number of different core types may be substantially
larger than two, sampling complexity further increases.
An algorithm proposed by Ghiasi et al. [86] overcame
this shortcoming. Their algorithm also targeted systems
where cores have the same microarchitecture, but run
at varying frequencies, but it did not require sampling
of threads’ performance on different cores to construct
a good assignment of threads to cores. Instead, Ghiasi
used a performance model to predict how a thread’s
IPC (instructions per cycle) is affected by a change of
frequency. This performance model, similar to that of
Koufaty [75] and Saez [17] was based on the number of
off-core request issued by the thread. Ghiasi’s algorithm
was implemented and evaluated on a real system, and
so it was built with practical considerations in mind:
the algorithm was structured in a way that did not
require examination of all possible mappings of threads
to cores – a task that could be prohibitively expensive
on a system with a large number of frequencies.

5.6 Summary
Scheduling for asymmetric multicore systems has been
an active research area. It is generally agreed that

asymmetry-aware thread schedulers are essential for
achieving effective utilization of asymmetric systems.
While early scheduling proposals suggested extensive
sampling (running each thread on each core type) to
determine good thread assignment, more recent research
is converging on a combination of lightweight sampling
(reading hardware performance counters on any core
where the thread is running) and modeling (using that
information to predict relative speedup). Most models
developed so far were evaluated on systems where
cores have identical microarchitecture but differ in fre-
quency [17], [86] or retirement width [75]. What is miss-
ing, however, is a model that would work on systems
where cores’ microarchitecture differs more dramatically.
For instance, Saez, Koufaty and Ghiasi all relied on the
amount of off-core or off-chip requests to model relative
speedup on different core types. However, on their ex-
perimental systems all cores had the same cache size. It
is not clear how well their models would work to predict
relative speedup on a core whose cache size is different
than that of the core where the rate of off-core requests
was measured. After all, the rate of off-core requests
may be strongly dependent on the cache size. We feel
that developing models for asymmetric systems with
more dramatic differences in cores’ microarchitectures
is a prominent gap that must be addressed by future
researchers.

6 CONCLUSIONS AND FUTURE DIRECTIONS
OS scheduler has been traditionally tasked with time-
sharing cores among threads and balancing the load
across computing units. In this work we surveyed three
exciting new areas where the OS scheduler must play a
vital role. The scheduler was shown to be an essential
part of energy-efficient and thermal-aware computing.

A common property of the surveyed algorithms is
that they all relied on monitoring of what was going
on in the hardware and in applications, and choosing
the best resource allocation strategy based on that infor-
mation. Although decisions themselves were in many
cases straightforward, obtaining the right information
was almost always challenging. For instance, the hard-
ware does not provide a way to measure per-application
power consumption, so researchers had to create intri-
cate power models. Asymmetric processors do not reveal
how much performance improvement an application is
enjoying on the fast cores, so researchers had to approxi-
mate that information. Information flow is also weak on
the part of applications. For instance, applications do not
inform the system about their phase changes or about
power- or thermal-intensity of particular regions of code.
Knowing these details would greatly simplify the job of
the OS scheduler.

We believe, therefore, that the future of research in
this area is in effective co-design of the hardware,
runtime management layer (including compilers), and
applications. A solution that has all these components
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interacting in synergy to achieve system-wide efficiency
goals will most certainly be better than solutions built
into any single component in isolation.
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