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Abstract—With the DDR standard facing density challenges
and the emergence of the non-volatile memory technologies such
as Cross-Point, phase change, and fast FLASH media, compute
and memory vendors are contending with a paradigm shift in
the datacenter space. The decades-long status quo of designing
servers with DRAM technology as an exclusive memory solution
is likely coming to an end. Future systems will increasingly
employ tiered memory architectures (TMAs) in which multiple
memory technologies work together to satisfy applications’ ever-
growing demands for more memory, less latency, and greater
bandwidth. Exactly how to expose each memory type to software
is an open question. Recent systems have focused on hardware
caching to leverage faster DRAM memory while exposing slower
non-volatile memory to OS-addressable space. The hardware
approach that deals with the non-uniformity of TMA, however,
requires complex changes to the processor and cannot use
fast memory to increase the system’s overall memory capacity.
Mapping an entire TMA as OS-visible memory alleviates the
challenges of the hardware approach but pushes the burden of
managing data placement in the TMA to the software layers.
The software, however, does not see the memory accesses by
default; in order to make informed memory-scheduling decisions,
software must rely on hardware methods to gain visibility into
the load/store address stream. The OS then uses this information
to place data in the most suitable memory location. In this paper,
we evaluate different methods of memory-access collection and
propose a hybrid tiered-memory approach that offers compre-
hensive visibility into TMA.

I. INTRODUCTION

Traditional DRAM memory cells are anticipated to be-
come too small (somewhere below 10 nm) to reliably hold
a detectable charge in the coming years [1]. DRAM cells
will thus reach their scaling limit—the point at which their
cost can no longer be reduced through process shrinks. Cost
reductions in DRAM-cell production will therefore stall and
open the door for emerging, mostly non-volatile, memory
technologies, including phase-change memory (PCM), 3D
XPoint, memristor RAM (MRAM), Spin-Transfer Torque
RAM (STTRAM), and fast flash memory (e.g., Z-NAND). The
future landscape of main-memory architecture for data-center
servers will inevitably require a hybrid approach as emerg-
ing non-volatile memory (NVM) technologies and DRAM
host the growing working sets for a wide range of data-
intensive server applications (e.g., in-memory key-value stores,
databases, VMs consolidated on individual cloud servers, and
high-performance computing [HPC] applications with large
memory needs).

This paper adopts a tiered-memory architecture that maps
all main-memory technologies into a single address space, and
the system software (hypervisor, runtime middleware, or the
OS) manages the mapping of underlying memory components.
Compared to alternatives that treat DRAM as a cache for

NVM [2] or treat NVM as a swap space for DRAM [3],
[4], this architecture allows in-place updates to all memory
pages, avoids data consistency issues, uses memory cells more
efficiently, and leverages existing software support for non-
uniform memory access (NUMA) architectures [5].

Due to the diverse latency, bandwidth, power, persistence,
and cost/GB characteristics of memory technologies and
their associated byte-addressable interfaces (e.g., NVDIMM-
P, CXL, 3D XPoint DIMM, CCIX, and Gen-Z), successful
tiered-memory architectures must rely on the system to min-
imize the latency associated with memory-content accesses
and address translation for each memory request. Optimizing
memory-access latency depends on the system’s ability to cap-
ture frequently used, or hot, data and dynamically allocate that
data to the most performant memory technologies available.

Unfortunately, optimizing system software’s use of memory
pages and TLB entries faces significant challenges:
(1) Poor visibility. Because hardware serves memory accesses,
software is left in the dark about how memory is accessed.1

The kernel gains some visibility when a fault handler is
invoked due to a missing memory page or a protection
violation [6]. But faults rarely happen on a tiered-memory
system (because no memory tier is exposed as a swap), and
when they do happen, they incur significant overhead [7].
Further, identifying application-software code segments that
most often access memory is complicated by multi-level
instruction/data/TLB caches that exist between application
threads and the actual memory accessed via cache/TLB misses.
(2) Diversity of hardware monitors. Software can gain some
visibility into memory accesses through certain backdoor mon-
itoring features exposed by hardware vendors. We describe
the known memory-monitoring features in section II-B, but
the features are often vendor-specific, with no standardization
available. Moreover, each feature offers unique trade-offs
with respect to verbosity, input sensitivity, and monitoring
overhead. Studies are needed to evaluate these trade-offs for
the monitoring methods currently available.
(3) Creation of a single profiler metric. Even if software can
enable a given set of hardware monitors, there is still the ques-
tion of how to process the information the software receives.
A profiler should combine information from many monitoring
sources to accurately and reliably identify hot/cold pages in
the tiered (hybrid) memories (cold pages being infrequently
accessed pages). Ideally, the profiler abstracts the many low-

1After a miss in a hardware cache, the hardware data fabric delivers loads
and stores to the hardware memory controller. Address-translation misses from
hardware TLBs are also served by the hardware page-table walker (PTW) on
x86 and ARM architectures. SPARC used to be an exception, with a software
PTW and a hardware PTW cache.



level monitoring details and presents the policy engine with a
simple list of pages ranked by hotness. This ranking approach
ensures a stable, vendor-agnostic profiler-policy interface so
system software developers are free to handcraft their own
hybrid memory-architecture policies independent of system-
specific hardware configurations.

In this paper, we evaluate multiple memory monitors and
propose a unified approach that offers verbose, low-overhead
visibility into tiered memory. We propose a tiered-memory
profiler (TMP) as a solution—a profiler that leverages existing
microprocessor support to lower software overhead and deliver
more accurate results relative to existing memory profilers.
TMP periodically retrieves raw memory-access-related data
from underlying processors, aggregates the collected data,
and produces meaningful statistics for memory-management
policies. TMP is completely transparent and requires no mod-
ifications to applications; TMP simply uses analytics to help
system software allocate memory.

This paper implements TMP in Linux, but the system
designer can implement the same concept to collect data and
generate hardware-based statistics to further reduce overhead.
By evaluating data-intensive HPC and cloud applications on
different processor architectures, we confirm that TMP reveals
more information than existing memory-profiling mechanisms.

We demonstrate the effectiveness of TMP with page-
placement policies derived from prior work. The TMP-based
tiered memory policies improve performance by up to 70%
due to comprehensive profiling support.

In summary, this paper makes four key contributions:
(1) The paper presents a low-overhead, high-accuracy profiling
mechanism that mitigates performance issues in TMAs.
(2) The paper generates insights that can guide efficient
memory-management policies for TMAs.
(3) The paper implements and evaluates memory-management
policies using the proposed profiling mechanisms to achieve
speedups without any hardware modifications.
(4) The paper introduces a profiling tool as an upgradable
solution to improve performance in tiered memory systems.

II. BACKGROUND

This section describes TMAs and justifies their adoption
over alternatives; because TMAs rely more heavily on the
system to judiciously use available memory technologies and
underlying hardware support, TMAs require more information
from a module/device like TMP. We also provide an overview
of the profiling mechanisms that make TMP possible.

A. Tiered Memory and TMA

TMA maps all available physical memory locations into a
single large address space. Theoretically, applications and sys-
tem software can treat TMA as conventional DRAM without
any modifications, but because hardware characteristics and
interfaces vary significantly, a system using TMA typically
categorizes its underlying memory technologies into different
tiers, where upper tiers offer lower access latencies and higher
bandwidth. In this paper, we refer to DRAM as tier 1 memory

technology and other NVM technologies as tier 2 technologies.
The tiered-memory system dynamically remaps and migrates
memory from tier to tier in order to increase the fraction of
memory accesses served from the faster memory tier.

Tiered memory is similar to NUMA in that all byte-
addressable memory modules present on the system (irrespec-
tive of their media technology or topology) are exposed to the
OS in the same physical address space. Memory in NUMA
is closely aligned with multi-CPU placement and is therefore
physically distributed across the server [8]. The NUMA API is
meant to reduce the latency of memory access by pulling pages
close to the CPU where the associated process is running [9].
Linux and Windows can enable AutoNUMA balancing for
page portions (e.g., 256MB portions) by periodically changing
page-table entry (PTE) permissions to no access. If an attempt
is made to access an unmapped page, a page fault is generated
and the kernel takes over and identifies the task that accessed
the page. AutoNUMA then determines whether to move the
page closer to the calling task or move the task closer to the
page. With tiered memory, by contrast, all CPU cores are close
to the fast DRAM rather than the NVM. Unlike with NUMA,
the problem with tiered memory is not about localizing data
near its compute; rather, the problem is that there may be more
data than can fit in the local DRAM memory.

There are four advantages to using software-controlled
tiered memory over using a hardware cache, which hides tier 1
memory from software via a giant last-level cache (LLC) [2].

First, tiered memory allows in-place memory access directly
from the tier on which the data reside. With a hardware cache,
the requested memory block is brought into the tier 1 cache
from the tier 2 addressable memory, resulting in increased
traffic. The in-place memory feature also differentiates the
tiered-memory approach from the page-cache approach. With
the page-cache approach (exposes tier 2 memory as a swap
device [3], [4]), accessing a single cache line via tier 2 swap
produces a costly page fault and is followed by the movement
of an entire data block into addressable tier 1 memory [7].

Second, tiered memory avoids the significant hardware costs
of large bandwidth-inefficient tags-in-DRAM (a.k.a. cache
tags) [2], and contention issues from the directly mapped
DRAM caches (and the related difficulty of using randomized
free-page lists as a remedy) [10]. In TMA, a memory page
can be found in either one of the tiers; caching would create
duplicated, potentially inconsistent copies of pages in memory
and would require mechanisms to keep data consistent.

Third, the tiered-memory solution allows for cache policy
fine-tuning (via workload mixes, service-level agreements,
etc.) to accommodate high-level policy decisions and eliminate
excessive migration.

Fourth, with the similarity of entrenched NUMA architec-
ture, tiered memory can leverage NUMA and Heterogeneous
Memory Management (HMM) [5] system infrastructures.
There are ongoing debates in the Linux community about
how to expose NVM to the OS. Current proposals revolve
around configuring NVM into CPU-less NUMA nodes and
managing TMA balancing with AutoNUMA or other existing
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NUMA methods [11], [12]. Here again the focus is mostly
on how memory is allocated and moved, not on how hotness
is profiled (e.g., how the periodic unmapping and page-fault
handling in AutoNUMA incurs overhead [13]). Our work,
which focuses on comparing various monitoring methods to
gain maximum hotness visibility with minimum overhead,
benefits both NUMA and tiered memory.

B. Memory Profiling Methods

Unlike hardware memory-scheduling mechanisms that can
gain visibility into memory accesses by tracking individual
cache lines [14] [15], system software (including the OS) is
unable to see regular, unfaulted memory accesses by default.
In order to determine which pages should be placed in fast
versus slow memory across the tiered-memory hierarchy,
the software needs help from the hardware.2 Below we list
available methods for the OS to gain such visibility without
the need for profiled workloads to be modified or recompiled.

Page Table Entry (PTE) bit tracking. In most architectures,
a PTE includes an accessed (A) bit and a dirty (D) bit. The OS
can clear these PTE bits, and the hardware page-table walker
(PTW) will set them. By observing the A-bit after each reset,
the OS can determine whether the page was used at least once
in the time interval since the last reset. The A-bit does not
differentiate between a page that was accessed a single time
and a page that was accessed multiple times over the course
of the profiling interval. More frequent A-bit checks improve
the informativeness of profiling but also increase overhead.

A-bits are used for performance tuning, and the PTW sets
the A-bit on a TLB miss. On the other hand, D-bits are used
for correctness (to evict to the backing store), and so they are
part of a TLB entry; if the D-bit on a store is 0, the PTW sets
the D-bit in the PTE regardless of TLB hit status [16].

Intel’s Page-Modification Logging (PML) hardware feature
automates D-bit collection. When PML is active, each write
that sets a D-bit also generates an entry in an in-memory
log with the physical address of the write (aligned to 4 KB).
When the log is full, a notification to the system software is
generated, and a hypervisor can specify an available set of
log entries to monitor the number of pages modified by each
thread [17]. In this paper, we focus on performance-oriented
optimizations reflected in the A-bit.

Trace-based profiling (TBP). TBP enables the collection
of address traces from load or store instructions. On AMD
systems, Instruction Based Sampling (IBS) [18], [19] enables
CPU instructions to be tagged as they traverse through the
pipeline, allows data to be collected as the instruction executes,
and raises an interrupt when the instruction retires. IBS
op (execution) sampling uses every nth micro-operation (n
configurable) and collects the following: virtual and physical

2There are many methods for obtaining memory traces by instrumenting an
app (e.g., with Pin) and emulating/simulating a system on which the app is
running (e.g., with QEMU, SimNow, or gem5). But the associated slow-down
from these methods makes them more appropriate for postmortem analyses in
domains like scientific computing. Such methods are not well suited to fast,
on-the-fly memory scheduling of unmodified workloads in a typical data-
center environment.

data addresses for loads/stores, hit/miss latencies for the data-
cache access status, and the TLB hit/miss/page size. IBS also
generates a northbridge status for the load/store; that is, IBS
(a) reveals whether it has been serviced by the northbridge
in the same/remote memory node and (b) provides its data
source (memory, local L3 cache, etc.). Software can adjust
the sampling rate based on the observed IBS overhead.

Lightweight Profiling (LWP) [20] is an AMD64 hardware
extension for Family 15h AMD processors that differs from
IBS in that LWP collects large amounts of data before gen-
erating an interrupt. When enabled, LWP hardware monitors
one or more events during the execution of user-mode code
and periodically inserts event records into a ring buffer in the
address space of the running process. When the ring buffer
is filled beyond a user-specified threshold, LWP can produce
an interrupt. The interrupt, in turn, causes the OS to signal a
process to empty the ring buffer.

Intel’s Processor (or Precise) Event Based Sampling (PEBS)
is a trace-based feature similar to IBS/LWP in which the pro-
cessor records tagged samples in a designated memory region.
PEBS samples can be selected based on many events (e.g.,
cache misses), and each PEBS record contains the timestamp,
the linear address, and the physical address, etc. [21].

Hardware performance counters (HWPCs) are special hard-
ware registers available on most modern CPUs and GPUs
as part of the Performance Monitoring Unit (PMU).3 These
registers obtain information about certain types of hardware
events, such as retired instructions, cache misses, and bus
transactions. PMU models from Intel and AMD can monitor
hundreds of possible events covering many aspects of a given
microarchitecture’s behavior [23]. HWPCs can track these
events without slowing down applications or the kernel [24].
The number of events that can be tracked in parallel depends
on the availability of counter registers inside the PMU. Soft-
ware tools like perf and pfmon can monitor more events than
there are physical registers via event multiplexing.

Unlike other monitoring systems, HWPCs are coarse-
grained—one metric for all process pages—and cannot be
used to obtain a memory access trace [25]. Nonetheless,
HWPCs can effectively detect elevated memory-usage phases
when other profiling methods should be enabled. HWPCs
can also track important metrics like the LLC miss rate to
help identify memory-intensive threads whose performance
strongly depends on the memory subsystem (note that a page
that is frequently accessed but also hits in the caches does not
benefit much from being migrated to fast memory) [26].

Other (software-initiated) methods. BadgerTrap [6] is a
kernel extension that intercepts TLB misses and can be used
to collect access patterns for selected pages [27]. When a
page is chosen for access counting, the kernel (1) poisons
that page’s PTE by setting a reserved bit (bit 51) and (2)
flushes the PTE from the TLB. The next access to the page
will incur a hardware page walk (due to the TLB miss) and

3Recently, additional monitoring metrics, such as cache occupancy and
memory bandwidth, have been made available via the Resource Control
hardware feature [22].
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Fig. 1: The architecture of TMP

trigger a protection fault (due to the poisoned PTE), which
is intercepted. BadgerTrap’s fault handler unpoisons the page,
installs a valid translation in the TLB, and then repoisons the
PTE. The total number of BadgerTrap faults thus yields an
estimate of the number of TLB misses to a given page. This
estimate is then used as a proxy for the number of memory
accesses. Such an approach is prone to fault overhead and
assumes that the number of TLB misses and the number of
cache misses to a page are similar, which may not hold for
hot pages, especially of larger sizes.

III. TMP DESIGN

Unlike prior profiler designs that relied on high-overhead
software-based mechanisms or employ piecemeal monitoring
hardware support, TMP leverages multiple key hardware fea-
tures available across modern processors and achieves low
profiling overhead. The TMP interface abstracts most low-
level hardware details yet reveals verbose profiling statistics
for optimizing memory-management policy decisions.

A. TMP Architecture

Figure 1 shows the architecture of TMP and TMP’s interac-
tion with other system components. We implemented TMP as
a Linux prototype so we could easily adjust the parameters
to optimize TMP’s design. TMP includes a kernel-space
module, a user-space daemon, and additional modules for A-
bit, IBS/PEBS, and performance counter profiling mechanisms
in Linux. The TMP driver manages and collects data from
different software and hardware profiling mechanisms. It stores
the data of a page by extending its page descriptor (PD)
structure. The user-space TMP daemon runs concurrently with
target applications to collect their process and thread IDs and
receive configuration parameters, while, in return, producing
meaningful statistics.

TMP’s use of multiple, complementary monitoring meth-
ods maximizes informativeness and minimizes overhead (Ta-
ble I). TMP takes advantage of trace-based profiling methods

Method Advantages Disadvantages

Trace-
based
profiling
(IBS/PEBS)

• High accuracy: ad-
dresses of individual
accesses are supplied.
• Overhead is indepen-
dent of the number of
processes tracked.

• Sparse: trace is heav-
ily sampled, so the
most accessed pages
are noticed.
• Raising the sampling
rate also increases col-
lection overhead.

PTE A-bit
profiling

• Good accuracy:
addresses of accessed
pages are supplied.
• Exact (not sampled):
if the page has been
accessed, the A bit will
eventually be set by
PTW: no information is
lost due to sampling.

• Overhead is directly
proportional to the
number of processes
tracked: since each
PID has a dedicated
page table, the more
PIDs are covered, the
more overhead there is
in traversing PTEs.

Performance
counters

Stats (e.g., cache
misses, bus
transactions) can
be tracked with close
to no overhead.

• If the number of
events tracked in paral-
lel exceeds the number
of PMU registers, the
verbosity suffers due to
multiplexing.
• Very coarse-grained:
one metric for all the
instructions running on
a core/sharing LLC.

TABLE I: The monitoring methods that TMP employs

(IBS/PEBS) to inspect memory accessed from regular last-
level caches (i.e., if the data source is out of local, combined
level 3 LLCs). TMP supplements this information with the
PTE’s A-bit profiling to gain visibility into memory accesses
from the TLB caches (a.k.a. cache misses of the address trans-
lation path). Additionally, TMP minimizes profiling overhead
by enabling trace-based and PTE bit collection when TMP sees
increased accesses to the actual memory (not cache hits); to do
this, TMP continuously monitors LLC and TLB miss rates via
the HWPCs, which incur minimal collection overhead when
identifying periods of inactivity.

TMP’s profiling mechanisms focus on demand loads be-
cause demand loads are on the critical path for the appli-
cation [28]–[30]; increasing the number of demand loads
served from fast memory reduces an application’s effective
memory-access latency. While prefetcher loads are important
on their own, serving them from fast memory won’t result
in a significant decrease in effective access latency because
applications load prefetcher-related data from cache rather than
memory (the data having been placed in the cache by the
prefetcher ahead of time).

B. TMP Implementation Details

The software TMP prototype includes (a) a kernel driver
that interacts with underlying profiling mechanisms and (b) a
user-space module that processes collected data and interacts
with the application if necessary. This section describes their
implementations in detail.

1) IBS/PEBS driver: We extended existing Linux kernel
drivers to create an IBS/PEBS driver for TMP [18], [19],
[31]. The IBS/PEBS driver uses a hardware mechanism that
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receives IBS/PEBS trace samples from underlying micropro-
cessor cores, and the kernel module periodically retrieves the
samples. We use machine-specific registers (MSR) to collect
memory-trace samples into a kernel buffer and use a register
interrupt handler to indicate when the tracing buffer is full. For
each access sample, we record the timestamp, CPU id, PID,
instruction pointer, virtual data address, physical data address,
access type (i.e., whether an access is a load or a store), and
useful cache-miss statistics. PD is used to accumulate access
counts of both A-bit and IBS/PEBS. phys to page() returns a
pointer to a PD from the physical address.

2) A-bit driver: TMP’s A-bit driver uses a software mecha-
nism to directly access PTEs. To visit valid PTEs, the mm_walk
data structure is used. A callback function registered with
mm_walk executes when the page walker visits a valid PTE.
We register gather_a_history() into mm_walk for A-bit
checking; gather_a_history() checks, saves, and clears
the A-bit via the TestClearPageReferenced() assembler
routine. The A-bit driver sees a virtual address and the
page table entry the address is mapped to, the driver calls
vm normal page() to obtain a PD.

3) User-space module: We modified numa_maps in the
Linux proc pseudo filesystem to provide a convenient user-
space interface for accessing collected profiling information.
In user space, TMP requires a profiling daemon to supply
PIDs. Whenever the user adds a program to profile, the TMP
profiling daemon will signal TMP to collect statistics for all
processes forked by the program. TMP can then access these
instances’ page-table structures via vm_area_struct.

4) Optimizations: To reduce collection overhead, TMP
incorporates three primary performance optimizations. First,
TMP complements A-bit profiling and trace collection with
TLB and LLC miss counters, respectively, to dynamically
disable profiling when it is not needed. A user-configurable
parameter turns each profiling method on and off. In our
analysis, we periodically count the number of TLB and LLC
misses and update the maximum value counted during a given
period. If the current number of events is more than 20% of
the maximum, we consider the corresponding profiling method
active. The TMP daemon then tells the TMP driver whether
to stop or resume A-bit or trace-based profiling.

Second, we filter processes by resource usage (selecting
processes with at least 5% CPU or 10% memory) in order to
reduce the number of page tables traversed for A-bit collection.
We re-evaluate processes once per second. TMP also offers
a mode that allows more restrictive filtering to reduce the
number of tracked PIDs and keep overhead stable.

Third, we follow prior work [32] and existing kernel rou-
tines4 and do not issue a TLB shootdown after the code
clears the A bit of each valid PTE traversed—this reduces the

4The description of ptep_clear_flush_young() in
/arch/x86/mm/pgtable.c states: “On x86 CPUs, clearing the
accessed bit without a TLB flush doesn’t cause data corruption... So as a
performance optimization don’t flush the TLB when clearing the accessed
bit, it will eventually be flushed by a context switch or a VM operation
anyway [33]”.
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Fig. 2: Ratio of PTW events to cache-miss events.

overhead of A-bit collection dramatically because the TLB
shootdown results in a costly Inter-Processor Interrupt (IPI)
on x86 systems [7], [32], [34], [35]. It is important to note
that when an A bit is cleared without a shootdown, the PTE
might not reflect a page access for a short period of time.
That is, the next A-bit setting might be slightly delayed until
the TLB entry is evicted and the page-table walk is triggered
(alternatively, a page could be accessed multiple times without
the hardware setting the A bit back to 1). We therefore retain
a configuration option that allows TMP to issue a shootdown
if a software application requires one.

IV. TMP IN TIERED MEMORY

TMP improves performance of systems with tiered-memory
by providing a holistic picture of applications’ memory-access
behavior. Using TMP’s statistics, the system can more effi-
ciently use memory pages located on different memory tiers to
improve the fast memory hitrate. We now describe the steps of
the TMP-powered tiered memory page placement mechanism.

Step 1: TMP profiler first gathers statistics on workload
memory accesses to identify hot and cold pages. TMP then
aggregates memory-access statistics for each page from mul-
tiple profiling methods into a single hotness rank. The higher
the rank, the higher the number of page accesses expected in
the future. Pages that rank higher are placed into fast memory
because they should benefit the most from tier 1 memory’s
low latency and/or high bandwidth. By aggregating memory-
access statistics from multiple profiling methods into a single
hotness rank, TMP offers superior accuracy and performance
compared to other profiling implementations.

Figure 2 shows the relative frequency of PTW instruction
and data TLB events that set the A bit versus the data-cache
miss events tracked using trace-based methods. The number
of samples is comparable for the two profiling methods (same
order of magnitude), so TMP calculates the rank as a simple
sum of A-bit and trace-based samples without the risk of
underestimating the impact of either profiling method.

Step 2: Tiered memory policy determines which pages to move
across tiers based on page ranks supplied by the tiered profiler
(after filtering for non-migratable pages). Researchers have
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Policy Description

Oracle

Assumes knowledge of how many times each page will
be accessed in the coming epoch and brings in the
hottest (most frequently accessed) pages into the tier
1 memory at the start of the epoch. Oracle represents
the upper limit for policy design.

History
A simple yet practical policy that, at the start of each
epoch, brings the previous epoch’s hottest pages into
tier 1 memory.

TABLE II: Tiered-memory policies considered in the study

Name Input Type Configuration
Data-
Analytics

Wiki dataset
Size: 0.6GB CloudSuite 1 master

32 workers
Data-
Caching

Twitter dataset
Size: 36GB CloudSuite 4 memcached

8 clients
Graph500 Input size:1GB HPC 8 processes
Graph-
Analytics

Twitter dataset
Size: 1.4 GB CloudSuite 1 master

16 workers
GUPS Input size: 4GB HPC 8 processes
LULESH Input size: 21GB HPC 8 processes
Web-
Serving

Faban workload
generator CloudSuite 3 servers

100 clients
XSBench Input size: 120GB HPC 8 processes

TABLE III: Workload setup

proposed policy variants implemented in the memory con-
troller, compiler, OS, runtime, hypervisor, or application [2],
[32], [36]–[48]. Table II lists the two policies from prior
work that we use in our evaluation. The policies are epoch-
based; they move pages periodically in batch during designated
moments called epoch horizons [2].

We chose the History and Oracle policies described in
Table II for the following reasons:
(1) TLB shootdown overhead is prohibitively expensive when
moving individual pages because it requires issuing a separate,
system-wide shootdown for each page migrated. Epoch-based
policies permit a single shootdown at the turn of the epoch
for all of the pages moved [2].
(2) Accessing tier 2 memory is not orders of magnitude slower
than accessing tier 1 memory; to justify the migration cost,
the hottest pages should be migrated. Identifying those pages
requires hotness rankings accumulated over a period of time—
the epoch duration.

Step 3: The page mover implements policy decisions by
migrating the hot pages to tier 1 memory and the cold
pages to tier 2 memory. Page migration allows pages to be
physically relocated across tiers to the relevant workloads with
transparency and while processes are running. So host virtual
addresses do not change.

The page-mover design has also been explored in the
literature [34], [35], [49]–[54]. Briefly, the page mover is
implemented either (a) inside the kernel memory manager with
optimizations for page migration (e.g., by making the TLB
shootdown faster) or (b) on the user level with system calls.
The latter case is similar to using the Linux move_pages() or
mbind() with the MPOL_MF_MOVE flag and hardware assists
from DMA engines (to relieve cores from byte copying).

V. EVALUATION METHODOLOGY

To evaluate TMP’s performance, we developed tools that
utilize different profiling methods on the modern processor
architectures. We then ran the profiling tools using a set of
diverse memory-intensive workloads. This section describes
the system configuration and the chosen workloads.

A. Testbed

We ran our experiments on retail CPU models because they
are widely available and because their profiling features are
common among all models of the same generation.

We used an AMD RyzenTM 5 3600X CPU with six 3.8 GHz
processor cores and a 32 MB LLC. The machine contains
64 GB DRAM and uses a 1 TB SSD to store the workloads
and the OS. It runs Linux with kernel version 4.15.18.

B. Workloads

To verify each profiling method, we used memory-intensive
workloads (Table III). We selected a subset of CloudSuite
and HPC applications, and we chose different inputs and a
different number of instances for each workload. To make
the profiling effect clearer, we set up each application to use
a large memory space. For CloudSuite, we created multiple
instances to increase memory usage. For HPC, we have
increased the problem size and created multiple processes to
increase memory usage.

VI. EXPERIMENTAL RESULTS

To balance the trade-offs between profiling resolution and
overhead, TMP must select an appropriate sampling rate for
IBS. Through our real-system evaluation, we found sampling
one out of every 256K instructions can provide a representative
picture of memory behavior while still maintaining a workload
overhead that is less than 5% of application overhead. With the
aforementioned sampling rate and the corresponding statistics
from TMP, the system can significantly improve the end-to-
end latency of an application—by as much as 1.13× when
using dynamic page allocation. We now discuss these results
in detail.

A. Trace-Based Sampling Rate

IBS relies on hardware features to generate statistics about
memory accesses but still needs TMP to periodically poll
and copy results back to a main memory buffer. To lower
the profiling overhead, TMP must find a reasonable sampling
frequency. At the same time, TMP must preserve the most
important profiling characteristics.

By comparing each workload under different sampling rates,
we found that using a sampling rate 4× the default (1 out
of 262,144 ops for IBS) better captures the access-pattern
details than the default sampling rate does. Table IV shows
the number of pages captured by A-bit and IBS profiling with
different sampling rates. Compared to the default sampling
rate, the 4× rate improves the visibility of memory accesses
by 2.58×. In contrast to this improvement, the 8× sampling
rate offers less than a 40% improvement over the 4× rate,
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Fig. 3: The heatmap for workload memory accesses using IBS with the 4× sampling rate

Detected Pages (IBS Default) Detected Pages (IBS 4x samples) Detected Pages (IBS 8x samples)
Workload A bit IBS Both A bit IBS Both A bit IBS Both

Data Analytics 111175 58740 1425 105776 95030 2279 111546 112238 2767
Data Caching 14817 11835 30 14791 15042 49 14768 14586 86

Graph 500 5458 4896 16 5426 9107 42 5423 11548 41
Graph Analytics 28323 28260 104 28051 85161 188 28063 115208 185

GUPS 5587 76009 16 5552 270555 33 5562 468487 36
LULESH 5735 6940 3 5570 20705 19 5584 34134 21

Web Serving 25220 3002 71 25186 4263 109 25199 3610 87
XSBench 5301 199609 8 5284 586787 18 5279 825973 19

TABLE IV: Count of pages captured with two profiling methods. ”Both” shows pages with at least a sample from each method.

and the additional pages that the 8× sampling rate captures
are less frequently accessed compared to those captured by
the 4× sampling rate. Since the 4× sampling rate has lower
sampling overhead, we used it as our sampling rate for IBS
in the rest of our experiments.

Figure 3 shows the workload heatmaps for the 4× sampling
rate. The horizontal axis of each heatmap shows the time
elapsed from when the application started running, and the
vertical axis shows the physical memory-address space used.
Each temperature point in the heatmap represents the number
of times a page frame has been accessed in a given interval.

B. Profiling Comparison
Figure 4 shows the heatmap for each workload with A-

bit profiling. A-bit profiling provides complementary infor-
mation about memory accesses related to the virtual-memory
subsystem. Table IV and the cumulative distribution functions
(CDFs) for A-bit profiling shown in Figure 5(d) underscore
this point. Compared to IBS in Figure 5(a)-(c), A-bit profiling
alone results in the memory allocator classifying fewer than
10% of the pages that incur TLB misses as hot, so opportu-
nities for performance optimizations are lost.

Table IV lists the number of pages captured by IBS and
A-bit profiling for the different workloads and sampling rates.
For many data-intensive applications like GUPS and XSBench,
IBS classifies 50% more accessed pages as potentially hot.
That being said, both A-bit profiling and IBS profiling revealed
that the hottest pages constitute a relatively minor portion of
the overall memory footprint of many workloads.

To quantify the overhead of each profiling mechanism, we
measured the end-to-end latency of each workload with our
profiler. For A-bit profiling, we walked through the page table
every second. Workload overhead was less than 1% of applica-
tion overhead. For IBS sampling, we collected memory-trace
samples with the default and 4× sampling rates. In all cases,
the workload overhead was under 5% of application overhead,
and even lower (under 2%) for the default sampling rate.

C. Performance Gains with Tiered-Memory Placement
We first analyze the tiered-memory policies from Sec-

tion IV. Figure 6 measures the memory hitrate—the number of
tier 1 memory accesses relative to the total number of accesses
to both tiers (a key metric for any TMA system). The results
are based on the profiling data from the real hardware. We
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Fig. 4: The heatmap for workload memory accesses using A-bit profiling
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Fig. 5: The CDFs for memory accesses using different workloads, profiling techniques, and sampling rates

include ratios ranging from 1/8 to 1/128; the smaller the ratio,
the greater the challenge for a policy to find the right pages
to place into (ever-shrinking) tier 1 memory.

We calculated the policy results using (a) A-bit profiling
alone, (b) IBS trace-based profiling alone, and (c) both A-bit
and IBS monitoring data from TMP. Figure 6 shows that the
performance of the Oracle policy is better on the combined
data versus the “piecemeal” monitoring approach, often by as
high as 70%. The simple, reactive History policy often lags
behind the predictive Oracle policy due to complicated access
patterns and the fact that many applications exhibit Monte
Carlo or randomized accesses. Unlike the Oracle policy, the
History policy sometimes struggles to properly combine the
data from multiple monitoring sources. Yet we see that even
the History policy often outperforms the non-TMP monitoring
methods by as much as 60%.

To evaluate the effects of improved memory hit rates from
TMP’s monitoring, we developed an emulation framework
based on BadgerTrap [6]. We chose emulation because avail-
able NVM media (e.g., Intel’s 3D XPoint memory [55])
can work with a limited combination of processor archi-

tectures, special motherboards, and BIOS support. NVM-
enabled systems also require kernel hacking (as opposed to
application development for persistent memory), which makes
them difficult to use remotely, even in a virtualized setting.

In our emulation testbed, we maintain a list of slower
memory locations and set protection bits on memory pages
that belong to the list. When an attempt is made to reach one of
these protected pages, the trap handler adds latency before the
system can grant access to the page. The emulation framework
sets the protection bits periodically, thus inserting additional
latency to emulate slower memory. We used the latency of
modern non-volatile main-memory technologies to calibrate
our timing parameters for the emulation framework. We use
50 us as the page migration overhead, 10 us for each slow
memory access after a protection fault, and an additional 13 us
latency if the page in the slow memory is hot. We configured
the system with 4 GB of fast tier 1 memory combined with
60 GB of slower tier 2 memory. The results show that TMP
achieves an average speedup of 1.04×, and an optimal speedup
of 1.13×, compared with the baseline that uses a NUMA-like,
first-come-first-allocate, tiered-memory policy.
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Fig. 6: The hitrate in the first tier of memory for the Oracle and History policies with an epoch of 1 second

VII. RELATED WORK

There is a limited body of work on memory profiling with
NUMA and/or tiered-memory. MemBrain [46] uses counters
for an offline estimation of memory-bandwidth utilization.
MemBrain also measures the overhead of LLC miss-trace
collection with PEBS-based profiling. The offline profiling
on SGI Altix [56] previously showed that long-latency loads
provide a better indicator for page placement than TLB misses.
Thermostat [27] classifies pages as hot or cold by intercepting
TLB misses via BadgerTrap [6], and Carrefour [53] combines

counters with IBS profiling to manage threads and memory to
avoid traffic hotspots, thereby preventing congestion in mem-
ory controllers and on NUMA links. These implementations
do not target a combined, dynamic, vendor-agnostic profiling
interface, which is the point of our work.

Some of the biggest supercomputers are expected to employ
tiered memory in the near future [57]. Runtime projects Sim-
plified Interface to Complex Memory [58] and Umpire [59]
seek to help port existing HPC codes to the new memory
paradigm. Our system is complementary to these projects.
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VIII. CONCLUSION

Tiered memory promises exabytes of byte-addressable
memory for software. The challenge is that software does not
see memory accesses by default. By leveraging multiple HW-
profiling methods available on modern CPUs, we argue for a
comprehensive, hybrid solution that makes the memory-access
stream visible to software. This visibility can then be leveraged
to achieve informed tiered-memory placement.
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