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Abstract—Updates to a process’s page table entry (PTE)
renders any existing copies of that PTE in any of a system’s
TLBs stale. To prevent a process from making illegal memory
accesses using stale TLB entries, the operating system (OS)
performs a costly TLB shootdown operation. Rather than
explicitly issuing shootdowns, we propose a coordinated TLB
and page table management mechanism where an expiration
time is associated with each TLB entry. An expired TLB entry
is treated as invalid. For each PTE, the OS then tracks the
latest expiration time of any TLB entry potentially caching that
PTE. No shootdown is issued if the OS modifies a PTE when
its corresponding latest expiration time has already passed.

In this paper, we explain the hardware and OS support
required to support Self-invalidating TLB entries (SITE). As
an emerging use case that needs fast TLB shootdowns, we
consider memory systems consisting of different types of
memory (e.g., faster DRAM and slower non-volatile memory)
where aggressive migrations are desirable to keep frequently-
accessed pages in faster memory, but pages cannot migrate
too often because each migration requires a PTE update and
corresponding TLB shootdown. We demonstrate that such
heterogeneous memory systems augmented with SITE can
allow an average performance improvement of 45.5% over a
similar system with traditional TLB shootdowns by avoiding
more than 65% of the shootdowns.

Keywords-Heterogeneous Memory; Self-Invalidation; Virtual
Memory; TLB; TLB Shootdown; HW/SW Co-design; Non-
Volatile Memories;

I. INTRODUCTION

The virtual memory system in modern computers enable
a wide range of features, from virtualization of the ma-
chine’s physical memory and protection, to a wide variety
of optimizations such as copy-on-write, memory compres-
sion, garbage collection, late binding/allocation of physical
memory, memory relocation, and many aspects of processor
virtualization. Processors support high-performance virtual
memory translations by caching recently accessed page
table entries (PTEs) in the low-latency translation lookaside
buffers (TLBs).

In the process of supporting the various virtual memory
maintenance or optimization operations, however, modifi-
cations of the page table entries (e.g., changing an address
mapping or page permissions) typically require a TLB shoot-
down operation. For example, software-transactional mem-
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ory [14], memory management debugging [16], MapReduce-
like frameworks [51], and concurrent garbage collectors [13]
can trigger frequent alterations of PTEs and thus associ-
ated TLB shootdowns. Importantly, emerging heterogeneous
memory systems critically depend upon efficient page migra-
tions across memory backed by disparate technologies. Page
migrations alter mappings between virtual addresses and the
physical addresses backing them, typically triggering TLB
shootdowns [37].

Unfortunately, a TLB shootdown is an expensive opera-
tion involving the operating system (OS) and hardware that
removes all possible stale copies of the modified PTE from
all TLBs that could be caching it. This is necessary to ensure
any future accesses make use of the correct, most up-to-date
mapping. Depending on the system architecture, number of
cores, and number of application threads, the latency for a
TLB shootdown can take up to 13.2 µs [37].

In this work, we propose a new hardware-software coop-
erative approach to manage TLBs that greatly reduces the
number of costly TLB shootdown operations. Traditionally,
entries are loaded into a TLB on TLB misses and remain
valid until they are evicted by the TLB’s replacement policy
or are explicitly invalidated by a TLB shootdown. Rather
than let these TLB entries potentially linger on indefinitely
in the processor TLBs until explicitly shot down, we assign
each TLB entry an expiration time. This acts like a “self-
destruct” mechanism, where the processor automatically
treats expired entries as invalid. At the same time, for
each PTE, the OS keeps track of the latest expiration
time assigned to any TLB entry potentially caching that
PTE. If a PTE is modified any time after its corresponding
latest expiration time has passed, then a shootdown is not
needed. It is guaranteed that no valid copy of the PTE
being modified is cached in any TLB, by design. This paper
details the architectural and OS support required to build an
effective virtual memory management system based on this
idea of self-invalidating TLB entries (SITE).

We demonstrate the potential of this approach with a
use case based on emerging heterogeneous memory systems
[e.g., a mix of DRAM and non-volatile memory (NVM)].
In such systems, there is a tension between frequent page
migrations from the slower NVM to the faster DRAM (to
increase the fraction of memory requests serviced by the
high-performance DRAM) and less frequent migrations (to



decrease the performance impact of TLB shootdowns). SITE
could present a solution that relaxes this tension to provide
both high DRAM service rates and low shootdown over-
heads, resulting in a substantial improvement in performance
over current systems.

In summary, we make the following contributions.
• We introduce the idea of Self-invalidating TLB entries

(SITE) to eliminate many TLB shootdowns.
• We detail the hardware and OS modifications needed

for implementing a SITE-based system.
• We perform detailed evaluation of SITE in reducing

the number of TLB shootdowns for a heterogeneous
memory system.

II. BACKGROUND AND MOTIVATION

We describe the TLB shootdown process, how it is
implemented, and why it does not scale. We discuss sources
of TLB shootdowns with a particular focus on heterogeneous
memory systems as they serve as our primary working ex-
ample in this paper. We motivate our work by demonstrating
the tension between page migrations and TLB shootdowns
in such systems.

A. TLB Shootdown

Core Core Core Core

TLB TLB TLB TLB

Page Table

Physical addressPermissionsPage Table Entry (PTE)

Operating 
System

Entry

1 Caching PTE
3 Updating PTE (e.g., new address)

Entry

2 Caching PTE

4
TLB Shootdown

(IPI to all participating cores)

5 Waiting for all acknowledgments

Figure 1. The process of TLB Shootdown.
Modifications to a page table entry (PTE) are typically

accompanied by a TLB shootdown. If a processor core
continues executing with a stale TLB entry, then erroneous
execution may occur due to use of out-of-date address
mappings or page permissions. The TLB shootdown pro-
cess ensures that any cached copies of the modified PTE
are discarded before continuing execution of the affected
application.

Prevalent commercial processors like those based on x86-
64 do not support automatic invalidation of stale TLB entries
on a modification to a PTE. The responsibility of invalidating
stale TLB entries falls on the OS, which does so via the TLB
shootdown process.

As shown in Figure 1, a page table entry (PTE) can be
cached in private TLBs of different CPU cores 1 2 . Later,

when the OS updates the PTE 3 , the OS issues or initiates
an inter-processor interrupt (IPI) across all participating
cores 4 1. Each receiving core executes an interrupt handler
routine that invalidates the entry for any cached copies of
the PTE in the core’s local private TLBs, and then sends
an acknowledgment back to the initiating core. In x86-64,
invalidating within a local TLB entry is done by either
executing an invlpg instruction or by writing to the cr3
register. The OS’s TLB shootdown routine running at the
initiator core waits for acknowledgment from each receiving
core before concluding the overall PTE update process 5 .

The overhead of interrupting cores and waiting for all
of the acknowledgments is very high, and the overhead
increases with the number of participating cores. There are
multiple sources for the shootdown overheads, including
multiple user/kernel mode transitions and the usage of legacy
APIC hardware (on x86-based systems) [37], [51]. Rather
than reducing the shootdown latency, this work presents a
new mechanism to avoid many shootdown operations. We
discuss other related mechanisms that could reduce shoot-
down latency in Section VII, although they are generally
orthogonal to our approach.

B. Heterogeneous Memory Systems

Conventional memory systems are based on DRAM tech-
nology, which is running up against fundamental physical
limitations as the DRAM cell sizes continue to shrink [36].
At the same time, a variety of emerging non-volatile mem-
ory (NVMs) technologies are gaining traction, including
phase-change memory [30], [28], STT-MRAM [2], mem-
ristors [52], and 3DXPoint memory [15]. While the exact
characteristics of the different technologies vary, a common
challenge is that the performance of these NVMs is typically
worse than DRAM. Thus, using NVM as a wholesale re-
placement for DRAM is unlikely. Instead, many researchers
are advocating heterogeneous memory systems consisting
of some DRAM for performance coupled with NVM for
capacity [7], [38], [42].

There are many possible organizations of heterogeneous
memory systems. In this paper, we consider a system with
a mix of fast DRAM and slower NVM. Other possibilities
include a combination of high-bandwidth in-package (3D-
stacked) DRAM [1], [4] with either conventional DRAM
or NVM outside of the package. While several different
approaches have been proposed to manage such heteroge-
neous memory systems, in this work we consider a system
where the OS is responsible for migrating pages between
the different memories in a manner that is transparent to the

1In a multi-process scenario, when the OS knows that a process does
not have any threads running on particular cores, the IPI does not need to
be issued to those “non-participating” cores. There are other optimizations
that allow filtering of some IPIs, but in general the IPI will still need to be
sent to all cores involved in executing threads for the affected process.



application programmer. More details of the exact mecha-
nisms are described later, and other alternative approaches
to manage heterogeneous memory systems are discussed in
Section VII.

C. Shootdowns vs. Page Migration

Using the heterogeneous memory system described above
as a working example, we now examine the tension between
aggressive memory management and the corresponding TLB
shootdown overheads. We consider a system with a fast,
first level of memory (e.g., DRAM), and a slower-but-larger
second level of memory (e.g., NVM). The details of our
experimental system can be found in Section V-A. Our
baseline heterogeneous memory management policy simply
keeps track of each page currently mapped to the slow
memory. If the page is accessed more than a threshold
number of times, then it is migrated to the fast memory.
If necessary, a page from the fast memory may also need to
be moved back to the slow memory to make room (selected
with a clock replacement policy [48]).

For a low migration threshold, a page in the slow memory
only needs to be referenced a few times before being
migrated to the fast memory. This allows the system to be
more responsive, aggressively moving pages to (hopefully)
allow more future references to be serviced from the faster
memory. A large migration threshold however, requires that
a page exhibit high levels of reuse before promoting it to
the fast memory. This reduces the likelihood of migrating a
page with few future uses, but it also increases the number
of requests that must be serviced out of the slower memory.

Figure 2 shows results for two representative applications
as we vary the migration threshold. Let us first consider
the Lulesh application on the left. The left y-axis shows the
fast memory’s miss rate (the fraction of memory requests
not serviced by the fast memory; lower is better). Lulesh
demonstrates reasonably good memory locality; when a page
is accessed, it is likely to be accessed many times again
in the near future. As a result, when we set the migration
threshold to 1 (i.e., move a page from slow to fast memory
on the very first access), we achieve a very low miss rate
from the fast memory. As the threshold is increased, the
miss rate steadily climbs because each memory access on
our way to reaching the migration threshold results in a miss
in the fast memory. However, simply setting a low migration
threshold can still be disastrous for performance, as every
migration is accompanied by costly TLB shootdowns. The
right y-axis shows the number of TLB shootdowns incurred,
and as the migration threshold is increased, the number of
shootdowns drops.

The right side of Figure 2 shows another application,
RSBench, that shows the same macro-scale trends, but the
slopes and concavities of the curves differ. RSBench has
poorer spatial locality than Lulesh, with many pages that are
accessed only a few times. Even with a migration threshold

of 1, almost half of the memory accesses miss in the fast
memory. When increasing the migration threshold to 10, we
observe a large drop in the TLB shootdown rate, indicating
that there are a significant number of pages that are accessed
fewer than ten times before being evicted out of the fast
memory.

Takeaways: These results illustrate the tradeoff between
maintaining low fast memory miss rate in a heteroge-
neous memory system against the number of costly TLB
shootdowns. If the overall cost of TLB shootdowns could
be reduced, then the heterogeneous memory management
system could afford to be more aggressive in its migration
decisions, leading to more memory accesses being serviced
from the faster memory. In this work, we take the approach
of reducing the frequency of shootdown operations through
self-invalidating TLB entries (described in the next section).

Furthermore, the results also illustrate that different appli-
cations react differently in terms of fast-memory miss rates
and the corresponding TLB shootdown rates. This suggests
that our proposed solution should have some dynamic com-
ponent to it to adapt to variations between and even within
workloads.

Other sources of TLB shootdowns: Beyond heteroge-
neous memory system, there are several other use cases that
could benefit from a technique to avoid shootdowns. For ex-
ample, software transactional memory dynamically modify
page permissions to detect conflicts among concurrent trans-
actions [14]. Concurrent garbage collectors modify page
permissions and re-maps pages to reclaim memory without
possibility of race conditions [13]. Memory management
bugs could be detected by altering page permissions [16].
These all could benefit from reduced overall cost of TLB
shootdowns.

III. SELF-INVALIDATING TLB ENTRIES (SITE)

Traditionally, address translations (contents of PTEs) are
loaded into the TLB by a hardware page table walker (e.g.,
in ARM and x86-based systems) on a TLB miss and remain
valid until they are evicted by the TLB’s replacement policy
or explicitly invalidated by a TLB shootdown. Instead, we
propose self-invalidating TLB Entries or SITE to cache
PTEs in TLBs with an expiration time. SITE enforces an
invariant that a translation entry in the TLB is valid only
if its expiration time is in the future. Thus, an entry in the
TLB with an expired “lease” does not need to be explicitly
invalidated. A shootdown can then be avoided by taking
advantage of this invariant if the latest expiration time of a
given PTE is known to be in the past.

For a concrete exposition of SITE, consider the scenario
shown in Figure 3. The left-hand side of the table shows
an example sequence of events and their timestamps in a
SITE-based system. The right-hand side depicts these events
in a system with two CPU cores. Here, core C0 accesses
virtual address A 1 . The corresponding TLB in that core
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Figure 2. The impact of the migration threshold on fast memory miss rate and number of migrations.

Core 0

TLB

1
Cache Translation Expiration Time

2

....
Page Table Root

....
Expiration Table Root

3

Core 1

TLB

Cache

Operating 
System

5

6

7

Event ID Time Description

1 0 C0 accesses address A.
Looks up TLB0.

2 5 TLB miss.
Page table walk starts.

3 205 Page table walk completes.
Calculating expiration time.

5 1300 C1 starts shoodown for address A.

6 1400 OS routine returns without shootdown
after consulting expiration time table.

7 1500 C0 accesses address A.
TLB Miss due to expired lease.

4 210 C0 receives the translation and expiration time.

4

Figure 3. A scenario demonstrating the self-invalidating TLB system.

is searched for a translation for A. Assume that the lookup
misses and a page table walk is initiated to find the in-
memory PTE that holds the desired translation at time T = 5
2 . At time T = 205, the hardware page table walker locates

the PTE 3 . However, different from a traditional system,
the walker in a SITE-based system retrieves the translation
and assigns an expiration time for A. The expiration time
is calculated to be 1205 by adding a chosen lease length
(1,000 in this example) and the current time (T = 205).
Furthermore, the walker records A’s expiration time in a
new in-memory data structure called the Expiration Time
Table (ETT). At time T = 210, Core C0’s TLB receives
A’s translation and installs it in its TLB along with the
expiration time 4 . C0 then initiates its data cache access
using the provided physical address. Design details such as
lease-length selection are described in the next subsection.

Later at T = 1300, another core C1 initiates the process
of invalidating the translation for address A (e.g., due to

a PTE modification) 5 . This involves calling a specific
routine in the OS. At T = 1400, this modified OS routine
for SITE alters the PTE for address A in the page table and
then consults the corresponding entry in ETT 6 . The OS
routine finds the expiration time for address A in the ETT is
1205, which is in the past. The OS then immediately returns
without performing the typical TLB shootdown and thus
avoids the corresponding cost. At T = 1500, core C0 again
attempts to access data with virtual address A f. However,
on a TLB lookup this time, the translation is found to have
already expired (expiration time 1205) and cannot be used.
This ultimately results in a page table walk, similar to what
was explained above 2 .

In summary, we observe that a SITE-based system can
avoid performing TLB shootdowns by utilizing the invariant
that a PTE whose latest-known expiration time (according
to the ETT) ensures that no valid copies of the PTE can
exist in any TLBs. At the same time, using SITE can also
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Figure 4. Number of TLB shootdowns normalized to the baseline (no
self-invalidation) with varying lease length.

introduce extra page walks due to expired TLB entries that
would have remained valid in a conventional system.

A. Design Considerations for SITE

While the general idea of self-invalidating TLB entries is
intuitive and simple, there are several key design consider-
ations to assemble an effective TLB-management solution.
Below, we discuss key design dimensions and our rationale
for each of our choices.

1) Unit of Lease and Expiration Time: A fundamental
need for supporting SITE is a way to mark the passage
of time. An obvious option is to use the physical clock
tick as the unit for lease and expiration times, as has
been previously proposed in the context of hardware cache
coherence (e.g., globally synchronized timestamps) [45],
[43]; commercial vendors also suggest the possibility of
realizing such global timestamps at least within a single
chip [19]. While an embodiment of SITE could use such
global physical time, we find it is unnecessary. Unlike cache
accesses and coherence traffic, TLB shootdowns occur much
less frequently, and so a fine-grained timestamp based on
clock ticks is not needed for SITE. On the other hand, SITE
is more valuable in large systems, possibly with multiple
chips/sockets, as TLB shootdown costs increase with system
size [51], [40]. Keeping a physical clock synchronized across
large systems can be challenging.

We instead use the main memory access (DRAM and
NVM) count as the logical time unit for lease and expiration
times in our proposed SITE implementation. There are at
least two reasons behind this choice. First, the main memory
access count changes at a much lower rate than clock
tick as memory is accessed only after a miss in the last-
level cache and is therefore easier to keep synchronized
(more in Section VI-B). Second, there are only a handful of
memory controllers in a system and therefore the hardware
modifications are limited.

2) Choosing the Lease Length: Choosing an effective
lease length is crucial. If the lease is too short, then TLB
entries will expire quickly, incurring additional TLB misses.
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Figure 5. Impact of the lease length on execution time, normalized to the
baseline (no self-invalidating TLB).

This will ultimately increase address translation cost. On
the other hand if the lease length is too long, then the
TLB entries will not self-invalidate quickly enough to avoid
shootdowns. Figure 4 shows how the fraction of incurred
TLB shootdowns (lower is better) changes with lease length
for two representative benchmarks (the rest are in Sec-
tion V). As expected, shorter leases reduce the number
of shootdowns. On the other hand, however, the address
translation cost grows with shorter lease lengths as additional
TLB misses are incurred (shown in Figure 11 in Section V).

These two conflicting trends imply that the overall appli-
cation execution time can be minimized only if the lease
length is neither too short nor too long.
Dynamic Lease-length Assignment: Figure 5 shows the
normalized execution time of two representative workloads
with varying statically selected lease lengths (lower is bet-
ter). Execution times are normalized to a baseline without
self-invalidation. We observe that the application LULESH
performs best when the lease length is 100K (static-100K,
fourth bar from left), and either increasing or decreasing the
lease length increases execution time. The same is true for
RSBench, but the best-performing lease length is different
(1k). Furthermore, even within a single application, different
memory regions (e.g., stack vs. heap) experience different
access patterns and are thus likely to prefer different lease
lengths. These suggest that the desired lease length should
be dynamically discovered at runtime.

To appreciate what lease length (range) may be desirable
for a PTE, Figure 6 shows the timeline of an example
sequence of shootdowns and page table walks for a virtual
address A. In the figure, the page walks PageWalke0 and
PageWalke1 occur due to expired entries in the TLB. These
page walks could have been avoided if the lease length was
long enough to cover the time between the last page walk
due a true TLB miss (here, PageWalkm1) and the most recent
walk (PageWalke1). We call this the minimum desirable lease
length. To avoid the second shootdown (Shootdown1), the
lease length should be shorter than the time between the
latest page walk (PageWalkm2) and the shootdown to ensure
that the TLB entry has already expired. We call this the
maximum desirable lease length. Ideally, one would pick a
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Figure 6. Desirable lease length for a given PTE.

lease length between the minimum and maximum values.
Note that the minimum and maximum desirable values may
not always overlap, and therefore it may not be possible
to simultaneously minimize both additional page walks and
shootdowns. Because shootdowns are orders of magnitude
slower than page table walks, it is reasonable to avoid
shootdowns even at the cost of a few additional TLB misses.

On#invalida)ng#a#PTE#for#address#A:#
###IF#(Expira)onTime(PTEA)#>#CurrentTime)#Then##
###{#####//Shorten)the)lease,)C)is)constant)
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#
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Figure 7. Algorithms for dynamic lease length assignment.

Based on the above observation that the lease length
should be maintained within the minimum and maximum
desirable range, the algorithms described in Figure 7 dynam-
ically adjust lease lengths based on a program’s observed
behaviors. On a PTE invalidation, if the OS finds that
the copies of the PTE in TLBs may not have expired,
it lowers the lease length following the insight from the
Figure 6 (typically, constant C=2). When the hardware page
table walker observes several consecutive page walks due to
expired entries, it correspondingly increases the lease length.
We empirically found that a threshold T h=16 is effective to
ensure that the algorithm favors the reduction of shootdowns
even at the cost of a few extra page table walks.
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3) Storing Expiration Times and Lease: Our SITE-based
system needs to store the latest expiration time of TLB
entries corresponding to a given PTE. Note that because
cache latencies are higher than TLB lookup times, the
extra latency of book-keeping for the expiration times is
completely hidden. Furthermore, for dynamic lease length
assignment, additional information (Figure 7) needs to be
kept at a per-page granularity. This information is comprised
of the latest expiration time 2, current lease length, and
timestamps for the latest true page table walks, and that
for any page walk (LastPTWTSMiss and LastPTWTS in
Figure 7, respectively). At 32 bits per timestamp, this
amounts to 16 bytes of storage per page, which is less than
0.31% overhead for 4KB pages (and lower still for large
pages).

The PTE format in modern page tables barely has any
free bits available [6], and so we propose to store the SITE
information in an auxiliary in-memory data structure called
the Expiration Time Table (ETT). To avoid constructing a
whole new page-table-like structure, the ETT reuses the non-
leaf page-table nodes as shown in Figure 8 (based on the
x86-64 page-table structure). The sharing of top-level/non-
leaf nodes reduces the number of memory accesses to look
up the ETT. Each 8-byte PTE entry is paired with 16 bytes of
SITE information, and so for each page of PTE information
in the original page table, we interleave two additional pages
to store the ETT entries3. With this layout, we can simply

2Section VI discusses how overflow can be handled
3At first glance, the overhead of the ETT may appear unattractive because

it amounts to an effective page-table size increase by ∼ 2× (less due to the
sharing of the non-leaf nodes). This can be easily reduced by re-encoding
the various ETT timestamps because their upper bits will almost always
be identical, and so there are well-known encoding optimizations that can
be applied. However, even with an unoptimized additional 16 bytes per
ETT entry, page tables are very small compared to the corresponding
application’s memory footprint to begin with, and so we do not bother
optimizing the ETT size here (less than 0.31% overhead).



reuse the calculation of the final PTE entry with a modified
offset to retrieve the desired ETT entry. A 16-byte ETT-entry
can be atomically updated by page table walker.

As shown in Figure 8, a page table walk proceeds as
unchanged for any non-leaf nodes of the page table. If SITE
is enabled, however, then on reaching the last non-leaf node
it looks up the corresponding entry in the ETT, in parallel to
looking up the leaf-level of the page table. Note that, a PTE
is 8 bytes long and thus, OSes pack 512 PTEs in a 4KB page
at the leaf level of a page table. Because each ETT entry is
16 bytes, the OS could allocate two more contiguous pages
next to the page holding the PTE4.

IV. IMPLEMENTATION: PUTTING IT ALL TOGETHER

We now describe the hardware and software modifications
necessary to implement one possible embodiment of a SITE-
based system.

A. Hardware Modifications

TLB Structure and Lookup: SITE extends TLB entries to
hold their expiration times (32 bits). This adds state overhead
less than the TLB tag overhead. However, a TLB’s tag array
does not contribute much to a processor’s area budget and
thus, this extension barely impacts a processor’s overall die
area. The TLB lookup process in SITE needs to compare the
expiration time of a given TLB entry with the current logical
time (here, number of DRAM accesses). On a tag match in
a TLB, a hit is signaled only if its expiration time is greater
than the current logical time. The tag and expiration time
lookups occur in parallel and do not significantly impact the
latency of a TLB access.

Also note that the overheads of SITE are minor compared
to previously-proposed temporal cache coherence works that
use the idea of self-invalidation for caches as they need to
extend each cache block with a timestamp and alter the
hardware cache coherence protocol [45], [43].
Hardware Page Table Walker: The hardware page table
walker (PTW) for SITE has three additional responsibilities.
1 The PTW assigns an expiration time to each address

translation it returns to TLBs. The PTW does so by adding
the current logical time and the lease value for the PTE
(found in the ETT) as described in Section III-A. 2
Next, the PTW needs to store the expiration time in the
corresponding entry in the ETT. This becomes the latest
expiration time for that given PTE. At the same time, the
PTW updates the statistics needed for the dynamic lease
assignment as described in Figure 7, which may cause 3
the PTW to increase the lease length for later accesses.

All of the above steps need the PTW to access the ETT.
As depicted in the Figure 8, the page table and the ETT
share the top levels or non-leaf nodes, and thus nothing

4Note that PTEs can be overlapped with SITE information in such that
one cache line access is sufficient to obtain the PTE and SITE information.
We leave such optimizations as future work.

extra needs to be done there (effectively re-using the existing
PTW operations). While accessing the leaf level of the page
table, the corresponding ETT entry is concurrently accessed.
Thus, we do not expect page table walk latencies to increase
significantly due to this extension, but we have accounted for
the possibility of longer page walks for SITE by assuming
a very conservative 33% latency increase in our evaluations.
Per-core Logical Time: We use the main memory access
count as the logical clock. Memory controllers can easily
keep count of memory accesses. However, on every load
or store, a core cannot query the memory controller for the
current count. Therefore in our implementation, we add a
register to each core to hold the current logical time (i.e.,
memory access count here). On each DRAM access, the
memory controller broadcasts a special message over the
cache coherence network (similar to a coherence control
message) to update the per-core registers. In systems with
multiple memory controllers, each controller independently
sends such messages to the cores. This is correct because the
per-core logical timestamp (register value) is what is used
in SITE, not the counts in individual memory controllers
(more on scalability in Section VI-B). Also note that these
update messages are sent to cores (not caches) at a negligible
rate compared to cache coherence messages that keep the
private cache hierarchies coherent in multi-core systems.
We empirically measured that this adds approximately only
3% overhead on coherence bandwidth, which can be further
reduced, if necessary (Section VI-B).

B. OS Modifications

SITE is an OS-hardware co-designed system. Below, we
describe the OS enhancements needed to support SITE.
PTE-invalidation Routine: The OS’s TLB shootdown rou-
tine is invoked to invalidate a PTE (Section II). This routine
is enhanced to avoid actually performing costly shootdowns,
when possible. Specifically, it looks up the entry in the
ETT corresponding to the PTE to be invalidated. If the
expiration time in that entry is less than the current logical
time (memory access count), then the shootdown is avoided
and the routine returns immediately. If not, the default path
of TLB shootdown is followed as shown in Figure 1.

This routine also needs to decrease the lease length as
per the dynamic lease assignment policy in Figure 7 and
update the corresponding ETT entry. This does not add any
observable overhead as PTE invalidation routines are already
several thousands of cycles long.
Allocating ETTs and Page Fault Handler: At the time
of allocating a PTE to map a newly allocated memory
page, the corresponding entry in the ETT is also created
and initialized. The page fault handler is easily extended
for this purpose. This adds an insignificant overhead as the
latency of page faults is already in the order of several micro-
seconds [42].



Table I
CONFIGURATION OF THE SIMULATED SYSTEM.

Processor and Caches
CPU 8 in-order cores, single hardware thread per-core
L1 TLB 32-entry fully associative per core (1 cycle hit

latency)
L2 TLB 256-entry 8-way associative per core (10 cycles

hit latency)
Page Walk Latency 150 cycles page-walk (L2 TLB miss), 50 extra

cycles for SITE
L1 Cache private, 1 cycles, 32KB, 4-way, 64B block
L2 Cache private, 10 cycles, 256KB, 8-way, 64B block
L3 Cache shared, 25 cycles, 8MB, 16-way, 64B block
Coherence MOESI protocol

Main Memory
Fast to Slow Memory Capac-
ity Ratio

1:8

Fast Memory Latency 150 cycles
Fast Memory Replacement Clock replacement policy [48]
Slow Memory Latency 600 cycles

Page Migration Overhead
TLB Shootdown Latency Issuing core 20,000 cycles, Receiving core 5,000

cycles
Page Copy Latency 5000 cycles
Page Migration Size 4KB

V. EVALUATION AND ANALYSIS

In this section, we evaluate the ability of SITE to reduce
the cost of TLB shootdowns in a heterogeneous memory
system. However, SITE is more broadly applicable to other
use cases like copy-on-write and garbage collection that
critically depends upon TLB shootdowns (discussed in Sec-
tion II).

A. Simulation Model

Similar to prior related work [51], [37], [33], to eval-
uate SITE, we used trace-based simulation using the PIN
toolset [39]. The simulator models detailed three levels of
caches, two levels of TLBs, and keeps the caches coherent
using a MOESI coherence protocol. We model heteroge-
neous memory comprising of fast (DRAM) and slow (PCM)
memory. The ratio of capacity between these two types
of memory is 1:8. We then modeled our threshold-based
page migration policy where a page is migrated to the fast
memory only after a given number of accesses (threshold)
to a page residing in slow memory. Unless mentioned
otherwise, we use a page-migration threshold of 10 for the
rest of the evaluation. We also model detailed page migration
and TLB shootdown costs. Table I details the configuration
of the system we modeled.

Using such a PIN-/trace-based simulation allowed us to
simulate workloads with large memory footprints (more than
1 GB) and run the applications for long run times. Both
of these are important to reliably characterize a system
with heterogeneous memory. We then use the statistics from
this simulation infrastructure to feed a detailed performance
model. At a high level, it models three types of latency.
1 Non-load/store instructions are assumed to execute in

one cycle. 2 Data access costs for load/store instructions
are calculated using hit/miss counts at the three levels of

Table II
APPLICATIONS

BT Block tri-diagonal solver (NAS benchmark).
CG Conjugate gradient kernel (NAS benchmark).
FT Discrete 3D fast Fourier transform (NAS benchmark).
LU Lower-Upper Gauss-Seidel solver (NAS benchmark).
LULESH Solve a simple Sedov blast problem for hydrodynamic

(ProxyApp)
MINIFE Finite Element mini-application (ProxyApp)
RSBENCH A multi-pole resonance representation lookup cross section

algorithm (ProxyApp)
XSBENCH A computational kernel of the Monte Carlo neutronics

application OpenMC (ProxyApp).

caches and their corresponding hit/miss latencies as listed
in Table I. Accesses that miss in the last-level cache incur
a latency to either fast or slow memory depending upon the
current memory mapping. 3 Address translation costs for
each load/store instruction are calculated by combining L1
and L2 TLB hit/miss rates with their corresponding latencies
and the latency of page table walks (Table I). For the baseline
without self-invalidating TLB entries, we assumed a page
table walk latency of 150 cycles. However, in case of SITE,
we conservatively increase this by 33% to 200 cycles to
model any extra latencies associated with ETT accesses. This
is very conservative because it is possible for the page table
walker to access the page table leaf node and ETT entry in
parallel. 4 Finally, we calculate the cost of migrating a page
from slow memory to fast memory by taking into account
the latency of copying the page between memories and the
cost of the TLB shootdown. For TLB shootdown cost, we
model it accurately assuming a larger latency incurred at the
initiator (issuer) core of the shootdown and 1

4
th that latency

at the receiving cores. The issuer core needs to wait for all
other cores to acknowledge the shootdown while receivers
do not (Section II and Figure 1), hence this asymmetry. The
latencies and ratio of asymmetry are similar to those reported
in previous works [40], [51].

B. Workloads

We evaluate SITE using eight multi-threaded applications
as listed in Table II. We choose these workloads from
the NAS parallel benchmark suite [10] and from publicly
released HPC proxy applications from the U.S. Department
of Energy [18], [3], [50], [49]. The applications are chosen
such that they are memory intensive, a requirement to exer-
cise systems with heterogeneous memory in any meaningful
way. We use input set size of C for NAS workloads, and
the memory footprint of each proxy application is around
1.25 GB.

C. Performance Evaluation

In the evaluation, we seek to answer the following ques-
tions: 1 What performance improvement can SITE achieve
by avoiding TLB shootdowns? 2 What are the sources of
improvements (degradations)? 3 What is the sensitivity
of the evaluation against varying parameters such as the
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Figure 9. The impact of SITE on performance of a system with heterogeneous memory (page migration threshold = 10).

migration threshold, shootdown latency, page table walk
latency, and slow memory access latency?

Figure 9 shows how execution time of different appli-
cations under page migration (migration threshold = 10)
improves with SITE. The y-axis shows the execution time
normalized to a baseline with no self-invalidating TLB
(lower is better). There is a cluster of bars for each appli-
cation listed along the x-axis. The right-most bar in each
cluster represents the baseline (no self-invalidation). The
left-most bar shows the normalized execution time with
SITE employing the dynamic lease assignment algorithm
(Dynamic lease) described in Figure 7. The bars in the
middle of each cluster represent SITE with static lease length
assignment. For example, Static-Lease-1K represents SITE
employing a constant lease length of 1K units of logical
time. We make two observations from Figure 9. 1 SITE
greatly helps performance, with dynamic lease assignment
(Dynamic) reducing the execution time by 45.5% on average
across all workloads. This is expected though, as it is well
known that the majority of overhead from page migration is
due to TLB shootdowns [37], [31], [7], and the benefit of
migration can be negated by such overheads. Because SITE
avoids many shootdowns, it helps performance significantly.
2 The dynamic lease algorithm helps across all workloads.

Except RSBench, the dynamic algorithm outperforms the
best of all static lease policies evaluated by adjusting lease
on a per-page basis 5. Even if a particular static lease length
performs better for a given workload, it is not known a priori
what this preferred lease length is. Therefore, dynamic lease
assignment is crucial for an effective SITE-based solution.

Next, we analyze the above-mentioned performance num-
bers. Figure 10 shows the number of TLB shootdowns nor-
malized to the baseline for each configuration in the figure 9.
The y-axis of Figure 10 shows the number of shootdowns
normalized to that in the baseline (lower is better). The x-
axis is same as the previous figure for execution times. We
see that a large fraction of TLB shootdowns is avoided by

5RSBench prefers a very short lease length, but our dynamic algorithm
was less aggressive and did not reduce the fraction of shootdowns by as
much compared to the best static lease values.
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Figure 10. Normalized TLB shootdown count with varying lease assign-
ment policy of SITE.
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Figure 11. XSBench’s execution time breakdown.

SITE with both dynamic and static lease assignment policies.
For example, on average across all workloads, 65.2% of
the shootdowns are avoided by SITE with dynamic lease
assignment. While SITE can avoid TLB shootdowns, it can
increase address translation costs by incurring additional
TLB misses due to expired leases. To understand how these
two opposing trends impact the overall execution time, we
dig into one of the representative workload XSBench in
Figure 11. The y-axis shows the execution time normalized
to the baseline. There are stacked bars for different lease
assignment policies of SITE and for the baseline. Each bar
is broken into three parts (stacks) showing the fraction of
execution time spent on TLB shootdown (Shootdown), the
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Figure 12. The impact of migration threshold on SITE’s performance.

fraction of time spent on address translation (Translation
cost), and the rest that includes data access, page copy costs,
and computation cost (Others). From the figure, we observe
that a large fraction of the execution time in the baseline
is attributed to the overhead of TLB shootdowns due to
page migrations. This is in line with the findings in previous
works [37], [31], [7]. This fraction, however, decreases
significantly with SITE. Reduction is more significant with
shorter leases and best with dynamic lease assignment. The
fraction for address translation is much smaller compared to
that for TLB shootdowns in the baseline because the cost of
shootdowns are orders of magnitude larger than the cost of
a page table walk. However, this fraction grows as the lease
length decreases, but not enough to negate the advantage
of the lower shootdown costs until a very small static
lease length of 1K. On the other hand, the dynamic lease
assignment policy for SITE does a good job of balancing
the lease length to achieve significant overall performance
improvement. We omit such breakdown for other workloads
due to lack of space and because they show the same overall
trends.

D. Sensitivity Studies

Next, we evaluate the resiliency of our SITE-based solu-
tion against several key design parameters.
Impact of Migration Threshold: In a system with hetero-
geneous memory, lowering the threshold for the number of
accesses to a page in slow memory before it is migrated to
fast memory (migration threshold) can increase the hit rate in
fast memory, but it also increases the number of shootdowns.
Figure 12 shows how SITE (with dynamic lease assignment)
fares with migration thresholds of 1 (first touch), 10, and
100 (Threshold=1, 10, 100, respectively, in the figure).
Lowering the threshold increases the number of shootdowns
in the baseline due to aggressive page migration and thus
offers more opportunity for SITE to avoid shootdowns.
Consequently, the efficacy of SITE increases significantly
with lowering migration threshold as shown in the figure.
Impact of TLB Shootdown Latency: SITE avoids TLB
shootdowns and thus changes in shootdown latency affect
its efficacy. Previously, we assumed a shootdown cost of
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Figure 13. The impact of TLB shootdown latency on SITE’s performance.
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Figure 14. Impact of page table walk latency on SITE’s performance.

20K cycles to the initiator (issuer) core and 1
4

th (i.e., 5K
cycles) at receiving cores (Table I). In Figure 13, we varied
the shootdown latency to 10K cycles and to 40K cycles for
the initiator core while maintaining the same ratio to the
latency for the receiving cores. As expected, the efficacy of
SITE increases or decreases with an increase or decrease in
the shootdown latency. However, even with a relatively small
shootdown latency of 10K, SITE still reduces the average
execution time of applications by 34.2%.
Impact of Page Table Walk Latency: SITE can increase
the number of page walks, and thus we vary page walk
latencies to see how that impacts SITE’s performance. Pre-
viously, we assumed a page walk latency of 150 cycles and
200 cycles (33% more) for SITE. We vary the baseline page
walk latency to 100 and 200 cycles, while also proportionally
increasing the page walk latency for SITE. In Figure 14,
we present execution times of SITE (with dynamic lease
length), normalized to the baseline (lower is better) with
these variations. As expected, higher page walk latency
decreases efficacy of SITE, but it still remains potent even at
a page walk latency of 200 cycles with about 45% reduction
in execution time on average.
Impact of Slow Memory Latency: Previously, we assumed
the slow memory in our heterogeneous memory system is
4× slower than the fast memory (Table I). Figure 15 shows
the impact of varying the latency ratio between fast and slow
memory (2× and 8×). We observe that the efficacy of SITE
does not alter with varying the latency ratio of fast and slow



0.553	  
0.545	  

0.541	  

0.0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

XSBENCH	  LULESH	  MINIFE	  RSBENCH	   CG	   BT	   FT	   LU	   Mean	  

Re
la
%v

e	  
Ex
ec
u%

on
	  T
im

e	  
	  

(N
or
m
al
iz
ed

	  to
	  N
o	  
Se
lf-‐
in
va
lid

a%
on

)	  

Workload	  

8x	  

4x	  

2x	  

Figure 15. Impact of the latency ratio of slow to fast memory on SITE.

memory.

VI. DISCUSSION

In this section, we discuss a few topics related to the idea
of SITE and its proposed implementation.

A. Energy Efficiency of SITE

SITE extends each TLB entry with a 32-bit expiration
time. On every TLB lookup, SITE also needs to compare
this expiration time with the current logical time to confirm
that the entry has not yet expired. Because the expiration
time can be looked up in parallel with the TLB tag, this does
not significantly impact latency, but it adds to the dynamic
energy consumption. However, industry projections show
that the TLB contributes about 6% of a chip’s power [46].
Thus, SITE is unlikely to add much to the overall energy
consumption of the chip.

More importantly however, SITE is likely to significantly
reduce static energy. Static energy (leakage) consumption
is proportional to the execution time, and SITE can reduce
execution times significantly (e.g., by up to 65%). As the
technology feature size for processors shrinks, the transistors
tend to leak more current, and therefore the static energy
can become a larger challenge [24]; static energy already
contributes more than 30-40% of some chips’ energy even
at the 22nm technology node [8]. Thus, SITE is likely to
help reduce the net energy consumption of a system.

B. Scalability of SITE

SITE needs a global logical clock to ascertain when TLB
entries have expired, and so SITE’s overall scalability is
determined by the scalability of this clock. If the clock
progresses too fast, then keeping the clock synchronized
is challenging. Thus, as discussed in Section III-A1, we
avoided using physical clocks and used the main memory
access count as the logical clock.

Here, we make three additional observations that could
further enhance the scalability of SITE for larger systems.
1 We observed that the best-performing lease lengths

across the applications are in 100s or 1000s of main memory
accesses (Figure 9) because the shootdowns happen rela-
tively infrequently. Therefore, SITE’s performance is un-
likely to be impacted if the logical clock advances only after

every 10 or even 100 main memory accesses. Advancing the
clock only in 10 or 100 memory accesses reduces the need
to synchronize the clock by 10 or 100 times. 2 Further,
we observe that SITE can relax the need for keeping all
local, per-core logical clocks completely synchronized, as
long as the maximum drift among them is bounded. SITE
then avoids a shootdown only if the expiration time of the
corresponding PTE is in the past by more than the maximum
allowed drift. Drift of n logical ticks can be bounded by
ensuring that the logical clocks are not advanced if the
number of yet-to-be-acknowledged updates to the per-core
clock is limited to the maximum of n. 3 Finally, SITE does
not break even if logical clocks temporarily stop advancing.
The logical clock needs to progress fast enough for the TLB
entries to expire but not necessarily on exactly every main
memory access, or on every 10 or 100 memory accesses.

In summary, we find that SITE can be scaled well to larger
systems using one or a combination of above-mentioned
techniques.

C. Timestamp Overflow

Our proposed implementation of SITE uses 32-bit logical
timestamps that would overflow at a very slow rate. We
estimate that even with a sustained high memory bandwidth
demand of 20 GB/sec, the timestamp counter would over-
flow in 13 seconds, assuming the timestamp is incremented
on every memory access. In case of the rare overflow, we
propose to simply flush all TLBs and invalidate all ETTs.

VII. RELATED WORK

In this section, we summarize the most related work.
Self-Invalidation: The concept of self-invalidation has been
explored in other contexts, such as in cache coherence
protocols [35], [43], [25], [27], [26], [47], [45], in cache
replacement [23], [32], and in cache power management [5],
[17], [22]. Min et al. proposed a timestamp-based software-
assisted cache coherence protocol [35]. Lebeck et al. pro-
posed to proactively invalidate shared cache blocks through
dynamic self-invalidation (DSI) to eliminate invalidation
messages [27]. Shim et al. improved DSI by delaying writes
until all shared copies are expired [43]. Lai et al. proposed a
Last-Touch Predictor to improve the accuracy of predicting
the shared blocks to be proactively invalidated [26]. Somogyi
et al. proposed predicting the last store to cache blocks
via PC addresses [47]. Employing self-invalidation to re-
duce cache coherence overhead has also been extended for
GPUs and accelerators [25], [45]. In the context of cache
replacement, various studies have looked into identifying
dead blocks as potential replacement victims, using counters
events [23] or cache bursts [32]. Other work proposed using
self-invalidation to reduce leakage power by turning off dead
cache blocks [5], [17], [22].

To the best of our knowledge, this is the first work to
propose using self-invalidation for TLB entries. Not only is



the context new, but the challenges are unique because TLBs,
page table walkers, and TLB shootdowns are not entirely
managed by the hardware, and the OS plays an important
role in these. For example, there is no hardware-enforced
TLB coherence in commercial processors and the OS needs
to get involved. Similarly, the OS allocates entries in the
page table, which is then looked up by the hardware page
table walker. This results in a significantly different design
space compared to past work on conventional caches.
Reducing TLB Shootdown Cost: This category of work
is the most related to our work, and includes the fol-
lowing studies. Romanescu et al. [40] proposed hardware
coherence support for TLBs [40]. While feasible, hardware
coherence for the TLBs may be an overkill because PTEs
are updated much less frequently compared to data caches,
and hardware coherence may add complexity to the core
TLB structures and circuitry. Cache coherence is already
tedious to validate due to its complex state machine [9];
TLB coherence is likely to add to that. Villavieja et al. [51]
proposed a shared hardware TLB directory (DiDi) that is
inclusive of all TLB entries in the system. DiDi helps filter
extraneous shootdowns to cores without cached copies of the
PTE. The centralized nature of this hardware-based solution,
and the fact that the proposed shared TLB needs to be
inclusive to all other TLBs, makes it difficult to scale to
a larger number of cores and to large per-core TLBs that
are becoming more common. It is not clear how it can be
adapted to handle multi-socket (SMP) systems, either. Oskin
and Loh [37] proposed hardware-assisted TLB shootdowns
to reduce inter-processor interrupt latency, but the overheads
are still large, i.e., in the microsecond range. Our proposed
self-invalidating TLB scheme is distributed, and scalable
to implement, without relying on any centralized hardware
structures. Recent versions from ARM processors started to
support an instruction called TLBi, which submits a request
to globally invalidate a specific TLB entry; however, it must
be followed by expensive global barriers, DSB. The costs of
such global barrier are expected to be extremely expensive
for large numbers of cores. SITE aims to eliminate the need
for TLB shootdown, whereas TLBi tries to minimize the cost
of TLB shootdown. Accordingly, SITE can be combined
with shootdown overhead optimizations. Furthermore, x86
systems are the most dominant for server market, where IPI-
based shootdown is still required.
Heterogeneous Memory Systems Management: There
are many prior studies exploring the management of page
placement in heterogeneous memory systems. Some stud-
ies relied on a hardware-only management approach [20],
[21], [29], [11], [41], [44]. While transparent to system
software, hardware caching is not without its costs. First,
the hardware cache typically requires non-trivial resources
for bookkeeping (i.e., the tags) that either require the con-
struction of large on-chip structures (SRAM) that increases
chip costs, and/or cannibalizes part of the fast memory

capacity to store the bookkeeping state, thereby reducing the
effective size of the faster memory resource. Furthermore, by
making the fast memory software-transparent, the total sys-
tem memory capacity is effectively reduced. An alternative
to hardware-only management is a software management
approach. Software management can be categorized into
OS-based and application-explicit management. OS-based
management approaches focus on migration policies and
improving performance via prefetching [37], [7], [33]. In
application-level management work, the application has the
flexibility to choose where to allocate memory objects and
how to migrate pages across different memory technologies.
An example of that is Memkind [12], which is a user-
level heap manager that provides programmers with different
memory services. Similarly, Meswani et al. proposed explicit
management of two-level memory through explicit calls
from applications [34].

Our work investigates a complementary and crucial ques-
tion of reducing the cost of TLB shootdowns. Lowering the
number and cost of TLB shootdowns is a crucial enabling
technology for the heterogeneous memory management dis-
cussed above.

VIII. CONCLUSION

We introduce the concept of self-invalidating TLB entries
(SITE) to avoid TLB shootdowns. While previous works
in this domain attempt to make TLB shootdowns faster,
this work avoids shootdowns at the risk of additional TLB
misses. Since shootdowns are typically two order of magni-
tudes or more slower than TLB misses, this trade-off often
comes out beneficial. We further propose to dynamically
adjust lease length of TLB entries to ensure this trade-off
remains beneficial for overall application performance even
when shootdowns are not common. However, future work
could unlock more performance by adjusting lease lengths
more aggressively.

The scalability of SITE to higher number of cores is
limited by the scalability of the logical clock it employs.
Our proposal to use memory access counts as logical clock
works well for moderately sized systems and for our use
case of systems with heterogeneous memory. However, for
larger systems with several sockets, an alternative design
that employs logical clock may work better. Future research
can explore how hierarchical clocks can be used by SITE to
scale to large number of sockets.
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