Heterogeneous Memory Architectures: A HW/SW Approach for Mixing
Die-stacked and Off-package Memories

Mitesh R. Meswani
John Slice

Sergey Blagodurov
Mike Ignatowski

David Roberts
Gabriel H. Loh

AMD Research
Advanced Micro Devices, Inc.

{mitesh.meswani, sergey.blagodurov, david.roberts, john.slice, mike.ignatowski, gabriel.loh} @amd.com

Abstract

Die-stacked DRAM is a technology that will soon be inte-
grated in high-performance systems. Recent studies have
focused on hardware caching techniques to make use of
the stacked memory, but these approaches require complex
changes to the processor and also cannot leverage the stacked
memory to increase the system’s overall memory capacity. In
this work, we explore the challenges of exposing the stacked
DRAM as part of the system’s physical address space. This
non-uniform access memory (NUMA) styled approach greatly
simplifies the hardware and increases the physical memory
capacity of the system, but pushes the burden of managing the
heterogeneous memory architecture (HMA) to the software
layers. We first explore simple (and somewhat impractical)
schemes to manage the HMA, and then refine the mechanisms
to address a variety of hardware and software implementation
challenges. In the end, we present an HMA approach with low
hardware and software impact that can dynamically tune it-
self to different application scenarios, achieving performance
even better than the (impractical-to-implement) baseline ap-
proaches.

Keywords: Memory architecture, Die-stacked memory
1. Introduction

Die-stacked memory is an emerging technology that has the
potential to significantly attack the memory wall problem [34].
In particular, placing one or more 3D stacks of memory inside
the same package as the processing units can provide orders
of magnitude more bandwidth at significantly lower power
costs [2]. In recent years, there has been significant advance-
ment in the industry including the development of die-stacked
memory standards and consortia [13, 16, 24], and various
announcements from several processor companies [12, 23, 2].

One key challenge of using in-package memory is that the
current integration levels are still insufficient to satisfy a high-
end system’s memory capacity requirements. For example,
current stacking technology may provide on the order of eight
3D DRAM stacks, each with 2GB capacity, for a total of 16GB
of fast DRAM [12]. However, many server systems already
support hundreds of GB of memory and so a few tens will
not suffice for the problem sizes and workloads of interest.
The resulting system will therefore consist of two types of
memory: a first class of fast, in-package, die-stacked memory,

978-1-4799-8930-0/15/$31.00 ©2015 IEEE 126

and a second class of off-package commodity memory (e.g.,

double data rate type 3 (DDR3)).

A large body of recent research has focused on utiliz-
ing the stacked DRAM as a large, high-bandwidth last-
level cache (e.g., an “L4” cache), coping with the chal-
lenges of managing the large tag storage required and the
relatively slower latencies of DRAM (compared to on-chip
SRAM) [18, 25, 14, 15, 36, 28, 20, 8, 10]. Such a hardware
caching approach has some immediate advantages, especially
that of software-transparency and backwards compatibility. As
the stacked DRAM is simply another cache that is transparent
to the software layers, any existing applications can be run
on a system with such a DRAM cache and potentially obtain
performance and/or energy benefits [19].

Hardware caches, however, are not without their challenges.
In particular, the implementation complexity is quite signifi-
cant for several reasons:

e The most effective DRAM cache proposals involve tag or-
ganizations quite different from conventional SRAM-based
on-chip caches. Some place tags directly in the DRAM for
scalability [18, 25], while others use page-sized cachelines
with sectoring and prefetching [15, 36, 14], all of which
require from-scratch engineering efforts to implement the
new cache control logic.

e The cache controller must also perform traditional memory
controller tasks such as issuing row activation and precharge
commands, respecting DRAM device timing constraints,
scheduling command and address buses, and managing
DRAM refresh. Designing a single unit that simultaneously
handles the cache controller functionality while juggling
the low-level 3D DRAM controller issues is likely much
more difficult than designing either one in isolation.

e A hardware cache implementation is also “baked in” to a
particular processor design, making the cache organization,
policies, etc., inflexible once built.

e Last, and possibly the most costly obstacle, is that the ver-
ification effort required to ensure the correct implemen-
tation of hardware-based DRAM caches is daunting and
has largely not been discussed in the DRAM cache liter-
ature. There are so many combinations of functional op-
erations (e.g., cache hit, cache insertion, writebacks) with
DRAM timing scenarios (e.g., row buffer hit, row conflict
but tras not elapsed, bus write-to-read turnaround not sat-

isfied) at different operating points (e.g., temperature de-

pendent refresh rates, entering/exiting DRAM low-power

modes) where the DRAM cache controller must be verified

to operate correctly.
Furthermore, the capacities of die-stacked DRAMs, while in-
sufficient to serve as the entirety of a system’s main memory,
still provides a non-trivial amount of capacity. Ideally, the
stacked DRAM would be available to augment or increase the
size of the system’s total physical memory, whereas caching
does not provide this benefit. The addition of even modest
amount of capacity was shown to substantially improve per-
formance of capacity-limited workloads [6].

In this work, we explore a different direction for die-stacked
DRAM, which is to keep the hardware simple, but to push the
management of the memory system up into the software lay-
ers. We consider a heterogeneous memory architecture (HMA)
where both the fast, stacked DRAM and the conventional, off-
package DRAM are all mapped to the same physical address
space, somewhat similar to a non-uniform memory architec-
ture (NUMA) approach [4]. We consider minimal hardware
support to aid the software layers in managing the HMA, but
the physical interface to the stacked DRAM remains simple.
At the same time, we maintain application-level transparency
in that all of the necessary software changes to use the HMA
are constrained to the operating system (or runtime system)
so that existing applications can run unmodified. In this man-
ner, we retain the programmer productivity advantages of
conventional hardware caching techniques, while keeping the
hardware implementation cost down.

2. Heterogeneous Memory Architecture (HMA)

In this section, we first go through the hardware implications
of a non-cache die-stacked memory organization, and then
we discuss the software challenges that arise when hardware
management has been removed from the picture.

2.1. HMA Hardware

2.1.1. Package-Level Organization In our baseline hardware
organization, we assume a high-performance accelerated pro-
cessing unit (APU) consisting of multiple CPU cores and a
GPU. The APU is 2.5D-integrated on a silicon interposer [7],
along with multiple 3D stacks of DRAM. Figure 1 shows the
packaging of these components. As discussed earlier, the 3D
DRAM does not provide sufficient capacity for a server-class
system, and so conventional off-package memory (e.g., DDR)
is also provided, as shown in the figure.

Recently announced systems integrate 16GB of in-package
3D DRAM; over the next few years with continued DRAM
density scaling and increases in 3D DRAM stack heights,
achieving 32-64GB of in-package memory is not unreasonable.
With main memory capacities in the range of 256GB-1TB
(or more), the size of the stacked DRAM would be in the
approximate range of 1/16 (64GB vs. 1TB) to 1/8 (32GB
vs. 256GB) of the off-package memory capacity. For the

127

Off-package Memory (DDRx)

Package Interposer Die-stacked DRAM

Figure 1: Package-level organization of the target system consisting of a high-
performance APU 2.5D-integrated with multiple DRAM stacks, along
with conventional off-package DDR memory.

majority of the studies in this paper, we assume a 1:8 ratio of
stacked vs. off-package memory.

Typical bandwidths for off-package DDR memory is in the
tens of GB/s. For example, a single DDR3 channel clocked
at 1600 MHz can provide a peak bandwidth of 12.8GB/s.
Most systems are equipped with only a few channels (e.g.,
2-4). With die-stacked DRAM, the bandwidths are signifi-
cantly higher. As an example, a single stack of JEDEC ‘“high-
bandwidth memory” (HBM) provides eight channels of 128
bits each, with a data transfer speed of 1Gbps [16], for a total
of 128GB/s. When considering that a system could include
eight stacks of 3D DRAM, that would push the aggregate peak
bandwidth to 1TB/s.

The result is a heterogeneous memory architecture (HMA)
consisting of a small portion of very high bandwidth in-
package memory, with a much larger amount of lower-
bandwidth commodity off-package memory.

2.1.2. Address Mapping Without loss of generality, we as-
sume that the stacked DRAM is mapped into a first contiguous
range of the physical address space, and that the off-package
DRAM is mapped to a second contiguous range in the same
address space. An example physical address mapping is shown
in Figure 2(a). During the system boot process, the standard
memory discovery and mapping mechanisms are used to de-
tect the stacked DRAM (as well as how much there is) and
assigns it to a particular region of the physical address space.
This is effectively no different than what is already done today
when the system boots up and must take inventory of how
much memory has been populated in each of the memory slots
for each channel on the system motherboard, but with the
process extended to also consider the die-stacked DRAM.

2.1.3. Memory Controllers Modern processors already con-
tain multiple memory controllers (MC). The addition of die-
stacked DRAM would require additional memory controllers
that were properly designed to handle the timing parameters
specific to the stacked memory. In the best case, this could
simply be an existing memory controller reconfigured with
new timing parameters. Figure 2(b) shows a portion of the
processor with the additional die-stacked DRAM controllers
(shaded) along with their physical-level interfaces (PHYs).!
The processor also already contains logic to route memory

I The stacked DRAM PHYs are shown smaller (but not to scale), as they only need
to drive a point-to-point link across the interposer, as contrasted to a conventional DDR
PHY that must drive a higher impedance load through the C4 bumps, the package sub-
strate, out the package pins, across the motherboard, and to the memory DIMMs.

0x0000000000 To package pins

To in-package DRAM stacks

Aﬁx
oC/Interconnect
|

10x1000000000
32GB Stacked DRAM
10x1800000000

il =
ﬁj

.
Cuc e
1

1

|0x4000000000

Physical Address Space (40 bits shown)

Lookup Address
256GB Device for Mapping
Requested Table
DDR Address —
(off-package)

L3 Cache
108000000000

Complex
/\/

(@) (b)

Figure 2: (a) Example mapping from a physical address space to the con-
ventional off-package and die-stacked memories, drawn approxi-
mately to scale. (b) Hardware modifications (shaded) to support
an HMA organization, including additional memory controllers and
memory physical-level interfaces (PHYs) and additional entries in
the address-to-device mapping table.

requests to the correct memory controllers. In a conventional
processor without die-stacked memory, the processor uses
the mapping that was set up during the boot process (Sec-
tion 2.1.2) to perform an address range check that determines
which memory controller “owns” the address, and then the
processor forwards the request to the respective memory con-
troller. In a system supporting an HMA, the mapping table
simply contains a few additional entries corresponding to the
memory ranges that map to the die-stacked DRAM. When a
request targets one of these ranges, the processor uses the same
mapping table to then forward the memory request to the corre-
sponding die-stacked DRAM memory controller. Overall, the
hardware changes necessary to support an HMA organization
are relatively minor and heavily leverage existing mechanisms.

2.2. HMA Software

2.2.1. Roles and Responsibilities A hardware cache con-
troller can store copies of individual cache lines, whether
small (64B) [18] or large (2KB) [14], but at the operating
system (OS) level all memory is managed at page granularity
(typically 4KB for x86 architectures). The operating system
(or other runtime software) must somehow decide which pages
should be placed in the fast die-stacked memory, and which
ones should be kept off-package.

The hardware cache controller has full visibility into each
and every memory request, whereas the OS has only a few bits
of coarse-grained information through its page table entries
(PTEs). A typical PTE includes a “referenced” bit and a
“dirty” bit. The OS can clear a PTE’s referenced bit, and later
when the processor accesses the page, the hardware page-table
walker will set the referenced bit. By observing this bit, the
OS can determine that the page was used. However, the OS
cannot determine how recently the page was accessed beyond
the broad interval of “sometime since the referenced bit was
last reset”, which could be an instant ago or much further

in the past. Similarly, the single bit does not provide any
differentiation between a page that was merely accessed a
single time versus one that was repeatedly reused over and
over again. Both the recency and frequency of page usage
would likely be critical inputs for the OS to use in deciding
which pages should be placed in the fast memory, but neither
are readily available. Additionally, the referenced bit is set for
any access to this page, but not all accesses result in traffic to
main memory (for example, a page that is frequently accessed
but that also almost always hits in the on-chip caches would
not benefit much from being migrated to fast memory).

Apart from deciding what pages should go where, the OS

must then also actually move the pages between fast and slow
memories, which introduces a host of performance challenges
discussed below.
2.2.2. Overheads and Performance Challenges Even as-
suming that the OS could make a good selection of pages
to place in the fast memory, the OS is still at a significant
disadvantage compared to a hardware cache. The DRAM
cache controller simply inserts a copy of the cacheline into
the cache after the requested data have been retrieved from
the off-package main memory. The OS must first take a pro-
cessor interrupt to do anything. Pages must be copied/moved
between the fast and slow memories, the corresponding PTEs
must be updated (even a single physical page could have mul-
tiple virtual addresses pointing to it), and then a translation
lookaside buffer (TLB) shootdown must be issued to each
core that may have cached copies of stale PTEs. The interrupt
latency alone can take several microseconds (e.g., average of
~2us on Real-Time Linux [29]), and the TLB shootdown can
take many microseconds as well.”

At least without some significantly more complicated mech-
anisms [3], this entire migration and remapping process must
occur while all of the target application threads are suspended.
Correctness issues may arise if an application is allowed to
continue running while its pages are being moved around. For
example, a write operation could be lost if a thread writes
to a page that was already migrated but whose PTE had not
yet been updated (or if the processor held a stale PTE). This
means that every microsecond of OS overhead related to HMA
page migration directly adds to the application’s execution
time. This overhead can potentially be offset by perform-
ing migrations infrequently, but then this runs the risk of a
migration/page-selection policy that is so slow that by the time
a page is migrated into fast memory, it may no longer be hot.
The migration frequency must be carefully balanced to en-
sure a sufficiently reactive page selection policy while keeping
interrupt and TLB shootdown overheads under control. We
discuss specific policy implementation in Section 3.

A pure OS-driven page caching approach is likely difficult
to implement for similar performance reasons. The idea would

2We measured the TLB shootdown latency on an AMD 32-core platform running
the Linux OS, and found that the latency grows with the number of cores involved in
the shootdown. For 4, 8, 16, and 32 cores, the shootdown latency takes approximately
4,5, 8, and 13us, respectively.

be to dynamically swap pages between the stacked DRAM
(which acts like a conventional “main memory”’) and the off-
package memory (which acts more like conventional storage
or swap). Only pages currently in the stacked DRAM have
valid PTEs, and so any miss would result in a page fault; the
OS would then step in, swap the requested page in, update the
page table, and perform a TLB shootdown if necessary (i.e., if
a victim page was removed from the fast memory, thereby ren-
dering its PTE invalid). This amounts to taking a page fault on
every single stacked DRAM miss, likely crippling performance.
This type of approach has been attempted [9], but in the con-
text of paging between DRAM and a fast memory-mapped
solid-state drive (SSD) device (where the alternative would be
the even slower path of going through the file system).

2.3. Isn’t This Just NUMA?

The described HMA has many similarities to a NUMA mem-
ory organization, in that different regions of the physical ad-
dress space have different performance characteristics. How-
ever, the nature of the non-uniform performance due to a
hybrid of memory technologies is different from a traditional
NUMA scenario. In a multi-socket NUMA system, it is de-
sirable to allocate memory on the same sockets as the threads
that will be accessing that memory the most. This can be chal-
lenging when threads from multiple sockets access a particular
object with similar levels of intensity. Placement of the object
at one sockets helps some threads and hurts the other, and
placement at the other socket hurts the former and helps the
latter. The HMA problem differs in that all threads run “close”
to the fast-DRAM, and so the desire is to allocate all memory
in the die-stacked DRAM. The problem is not about localizing
data near its compute, but rather that there is more data than
will fit in the local “NUMA domain”.

3. Managing the HMA

The operating system or runtime must somehow detect the
pages that will be used most often, where “used” is with
respect to the memory traffic, not in terms of memory instruc-
tions that could hit in the on-chip caches. We now detail some
possible HMA management policies.

3.1. Baseline Algorithms

3.1.1. Oracular Page Selection The first policy that we de-
scribe attempts to fill up pages in stacked memory based on
perfect future knowledge. It provides an upper bound for the
best possible performance of an HMA management policy
for a unified address space. We divide a program’s execution
into epochs, where each epoch is a fixed-length interval (e.g.,
0.1 seconds). During the course of each epoch, the hardware
tracks the memory traffic (i.e., from last-level cache misses)
associated with each page.

Oracle is an idealistic reference policy, at the start of each
epoch it selects the N pages of memory that will serve the most
traffic (reads or writes) during the upcoming epoch (assuming
a first-level memory capacity of N total pages). These N pages

129

are then loaded into the first-level memory, and all remaining
pages are placed in the second-level memory. The page tables
are updated to reflect the new virtual-to-physical memory
assignments (and all translations set to be valid), and so no
further page faults are required. The only overhead is a single
OS intervention (equivalent to a migratory fault) to update the
mappings once per epoch.

3.1.2. History-based Page Selection Rather than relying on
unavailable information about the future (as in the case of the
Oracle policy), the history policy that we describe next selects
pages based on past traffic patterns. At the end of an epoch, the
OS sorts all pages, and for a stacked DRAM with a capacity
of N pages, the OS selects the top-N pages responsible for
the greatest amount of main memory traffic to be placed into
the stacked DRAM. Any pages that were in the fast memory
but did not make the top-N cut for the next epoch must be
migrated back out to off-package memory, and the page table
must be updated to reflect all new page placements. A similar
history-based approach was previously explored [19]. The key
implementation challenge is in devising a scalable mechanism
that allows the hardware to maintain per-page traffic counts;
this will be revisited below in Section 3.2.

This history-based page selection relies on the assumption

that a page that was heavily used in the recent past will con-
tinue to be heavily used (and similarly, cold pages remain
cold). The selection of a shorter epoch length allows the his-
tory policy to adapt more quickly to changes in a program’s
working set, but then it also increases the inter-epoch OS
overhead.
3.1.3. First-touch Page Selection The second baseline policy
is derived from a common NUMA memory allocation strategy.
The “first touch” NUMA allocation policy places a page of
memory on one of the memory channels belonging to the same
socket of the thread that first requested the page (if there is
room). For private, per-thread data, this ensures that such
pages are co-located with the only thread that will ever use
them. For shared pages, the heuristic also works well in many
scenarios.

For an HMA system, at the start of each epoch, all pages
are initially marked invalid in the page tables (and all TLBs
must be shot down). Then, as pages are accessed, there are
two scenarios. In the first case, the page is currently in the
off-package memory, and so the page is migrated to the fast
memory, the page table is updated to reflect the new mapping,
and the PTE valid bit is set. In the second case, the page is
already in the fast memory (i.e., it was mapped there during
the previous epoch), and so only the PTE’s valid bit needs
to be set. Any subsequent accesses to this page will proceed
normally (i.e., without a page fault) as the corresponding PTE
is now valid. As new pages are accessed for the first time
during the epoch, more pages are migrated into (or re-enabled)
in the fast memory until the stacked DRAM is completely
filled up. Note that as pages are migrated in, pages from
the fast memory may also need to be migrated out. Note

that any such pages still have invalid PTEs, and so the OS is
free to change their mappings without worrying about TLB
consistency issues (i.e., no need for shootdowns). Eventually
after the stacked DRAM has been filled, the OS re-enables the
valid bits on all remaining pages that will now be stuck in the
slower off-package memory for the rest of the epoch.

This first-touch HMA policy does not require any additional
hardware support to track page access counts, but it may select
a sub-optimal set of pages to place in the fast memory as the
first pages touched in an epoch are not necessarily the ones
that are responsible for the most memory traffic. Another
challenge for first-touch is that each “first touch” event during
an epoch incurs a page fault that includes an OS interrupt.
Contrast this to the history-based approach that takes a long
time to sort and migrate a large number of pages at the start of
an epoch, but then does not interfere until the next epoch.

3.2. Hot Page Policy

The history-based policy described above is not immediately
practical because it requires sorting every page in memory
based on access counts and then selecting the top N pages
(where N is the size of the fast, die-stacked DRAM).? Our
next policy simplifies the problem by simply dividing pages
into “hot” versus “cold” pages using a simple threshold. Any
page that has an access count that exceeds a fixed threshold
0 is classified as hot (for the current epoch). By choosing 6
correctly, the number of pages classified as hot will hopefully
be close to N.

In the ideal case, if the hot-page count is exactly N, the sort-
ing operation can be completely skipped because the choosing
of the top-N out of a set of N simply amounts to choosing the
entire set. Sorting is also unnecessary when the size of the hot
set is less than N. Under normal operation, the hot set will
usually be different than N. In the case where there are more
hot pages than fit in the fast memory, the OS can choose the
top-N out of this smaller set (i.e., not all of memory). In the
case where the set of hot pages fails to use up all of the fast
memory, the remaining capacity is filled using a first-touch
approach.

A key advantage to this approach is that, similar to the
history-based policy, pre-loading pages and making the cor-
responding PTEs valid at the start of the epoch cuts down on
faults related to migrating pages via the first-touch mechanism.

This first-touch hot-page (FTHP) policy is effectively a gen-
eralization of both the history-based and first-touch algorithms.
When 6 is set to zero, then all pages are considered hot, and
so sorting the hot pages is the same as sorting all of memory,
which then is equivalent to the history-based policy. When 6
is set to oo, then no pages are ever in the hot set, so the entirety
of the fast memory is populated via the first-touch mechanism.
Setting 6 to finite, non-zero values strikes a balance between
the two approaches: some number of hot pages are pre-loaded

3 A full sort is not strictly necessary, as the problem is actually to choose the top-N,
which is algorithmically faster than sorting all objects in a set.

130

into the first-level memory to reduce faults, and the remaining
capacity can be populated dynamically based on whichever
pages the program accesses.

Tracking Page Access Counts The FTHP policy still requires
tracking the per-page memory traffic. To support this, we
propose an extension to the existing TLBs and hardware page-
table walker (PTW) logic, along with some potential changes
at the software level. We logically extend each PTE with a
count field that records the number of memory accesses for
that page. We likewise extend each TLB entry with a field
to track the number of accesses to the page corresponding
to the cached PTE. On each last level cache (LLC) miss, the
counter is incremented. On a TLB eviction, the counter value
is written back and added to in-memory count. The OS can
then use these access count values in choosing its hot pages.
For some architectures, the PTEs do not have enough free
bits to store an access count. In these cases, the counts may
need to be placed in an auxiliary data structure that parallels
the page table [17]. In other architectures with enough free bits
in the PTEs (or in a system where large pages are used, which
frees up several PTE bits), the counters may be directly placed
in the PTEs. In any case, the hardware PTW must be modified
to perform this read-modify-write on the counters, which is
not currently supported. However, the changes are minimal
as the PTW already has all of the logic it needs to read and
write PTEs, and so the primary additional hardware is simply a
single adder and the relevant control logic/finite-state-machine
updates. Overall, the PTW changes are relatively minor, but
the software changes could be much more challenging in prac-
tice (especially when the hardware companies are not the ones
writing the OS software!). We revisit this later in this section.

3.3. Setting the Hotness Threshold

The FTHP policy relies on setting the hotness threshold 6.
Setting the value too low can cause the HMA to have too
large of a hot set, thereby increasing the overhead of choosing
the top-N; setting the value too low results in a small hot
set, which in turn increases the faulting overhead due to the
first-touch mechanism. The best threshold can vary from
application to application, within phases of an application, and
also depending on the actual size of the die-stacked DRAM in
a given system. It is undesirable to have the OS vendor hand
tune this parameter to support a wide range of applications
and platforms.

We propose a dynamic feedback-directed HMA policy that
can dynamically adjust the hotness threshold 6 to achieve a
best-of-both-worlds approach between history-based and first-
touch policies. At the start of each epoch, the size of the hot set
is compared to the size of the die-stacked DRAM (N). If the
hot set is too small to fill the fast memory, then 6 is lowered
which causes more pages to be classified as hot. Likewise,
if the hot set is too large, 0 is increased which causes fewer
pages to be put in the hot set. If the feedback mechanism
works well, then the size of the hot set should converge to N.

Having the hot set size equal (or come very close to) N is
very desirable. In the case that both are exactly equal, then
the number of first-touch faults is reduced to zero (because
the entire fast memory has been populated and so there is no
room to bring in any more pages via first-touch), and there is
no need to sort the pages to find the top-N as discussed earlier.

There are a variety of ways to update 8 each epoch. We
simply use a proportional linear feedback control system. This
is but one possible algorithm for dynamically adjusting 6; we
do not claim it is optimal, but it provides an effective proof of
concept of the approach. The key result is that the parameter
0 need not be hand-tuned, and this allows the mechanism to
be more easily applied to a broader set of applications and
platforms.

3.4. Low-cost Hot Page Detection

The hardware and software support required to track the hottest
pages may be too invasive for main-stream systems (e.g., those
based on the x86 ISA). Here, we propose an approximation
that greatly simplifies the hardware support. We also explain
how to adjust the FTHP algorithm to work with the simplified
hot-page tracking.

The first part is on the OS side. Instead of using the PTE’s
accessed bit to mean that a page has been referenced by the
processor, we instead re-interpret it to mean that the page
has been classified as “hot”, where hot is the same as before,
meaning that the page has generated more than & memory
requests to it. This new-interpretation provides backwards
compatibility; if the OS sets 0 to zero, the hardware PTW will
update the accessed bit on the first reference to the page.

We maintain per-TLB-entry access counts to track the mem-
ory traffic associated with each page. However, rather than
accumulate the total traffic in an in-memory counter (which
requires new OS data structures or many unused PTE bits),
the processor monitors the count in the TLB entries. When
the TLB’s access count for a page exceeds the threshold 9, it
invokes the hardware PTW and sets the accessed/hot bit in the
PTE.

At the end of the epoch, all pages that had more than 6
memory accesses will have their respective accessed/hot bits
set in the PTE. These now form our hot set of pages. Similar to
FTHP, if the hot set is smaller than N, then we use first-touch
to populate the remainder of the die-stacked memory. If the
hot set is larger, then we simply take the first N pages (as we
have no other way to differentiate them as they all only have a
single hot bit that is set). The dynamic-feedback approach can
be applied here as well to adjust the value of 0 to try to make
the size of the hot set match N as closely as possible.

This “hot bit” HMA policy requires minimal hardware
changes. Setting the hot bit in the in-memory PTE uses the
exact same mechanism that is used today to set a PTE’s ac-
cessed bit. A new model-specific register (MSR) is needed for
the OS to specify the current threshold 6. This is necessary,
because when the processor increments the in-TLB access

131

counts, it must compare the count against 6 to know if the
page has crossed over the hotness threshold and therefore have
its accessed/hot bit set.

This hot-bit policy is also just an approximation of the
FTHP policy. It could happen that a TLB entry’s access count
reaches 0-1, and then the TLB entry gets evicted. When the
page is re-accessed, there is no saved history for previous
access activity, and so the count starts again at zero. In a
pathological scenario, the page is accessed frequently enough
that it should be classified as hot, but its hot bit never gets set.
As mentioned earlier, having only a single bit of discrimination
leaves the policy unable to “sort” the hot pages when the hot
set is greater than N, which is another possible source of
behavioral deviations from FTHP.

Detecting hot pages is an area of ongoing research, for
example the IBM POWERS architecture [!1] stores memory
reference counts and reference history for a page in the page
table. An OS-level page manager was proposed in [35] to
manage a DRAM+PRAM architecture. The OS page manager
uses multiple least recently used (LRU) queues [37] to find
the set of pages that are most frequently written and migrates
them to the DRAM. We note that the differences and the goal
of our hot-page detection was to take advantage of the existing
page table walk hardware as much as possible, and to explore
approximate solutions for a practical implementation. Overall
our research focus is on various methods to manage HMA
(hardware cache, page cache, and unified address space) for a
multi-tiered memory hierarchy in which stacked memory is
only a portion of the total memory footprint of the system.

3.5. Other policies

We have also evaluated a number of hardware cache and OS
page cache policies. We model a hardware managed DRAM
cache based on the Alloy Cache model [25], with a direct-
mapped organization with tags and data (64-byte cachelines)
read out together to minimize latency. By caching only blocks
that are missed on by the higher-level caches, a hardware cache
by itself would not be able to exploit the spatial locality in
the access streams. To address this, our cache implementation
employs a prefetcher that pulls 1 kilobyte worth of data along
with the missed bock.

For the OS page cache policy, the crucial aspect is deciding
when a page needs to be evicted. We implement a multiple first
in first out (Multi-FIFO) page replacement algorithm borrowed
from PerMA and DI-MMAP projects [32] and [31]. In this
replacement policy the evicted page is first put on one of two
queues (hot-page or eviction) and pages are evicted to make
space only if the level 1 memory is full. Evictions only occur
from the eviction list.

4. Experimental Methodology
4.1. HMA simulation

We implemented a memory trace-driven HMA simulator that
models the two different types of memory, along with the

different management policies. To drive the simulations we
collected traces for memory accesses that miss the last level
cache for workloads executing on a system with an AMD
A10-5800K APU clocked at 3.8GHz and 16GB memory. The
traces have information about reads/writes, timestamps and
physical address being accessed. The timestamps were used
to generate interrupts for our epoch driven policies.

From the memory traces along with additional information
gathered from hardware performance counters, we develop
simulator that functionally models the behavior of the individ-
ual HMA policies that can determine whether the individual
requests hit or miss in the fast memory, migration activity,
whether interrupts or TLB shootdowns are needed, etc., and
these events are coupled with an analytical model to project
performance and energy. The model uses the Leading Loads
method [26, 30] to split an application’s execution time into
CPU time and memory time using performance counters. The
leading load model calculates the memory time as the time
spent servicing the leading (first in case of many outstanding
loads) non-speculative load that misses the last level cache.
This model has shown to be fairly accurate for predicting ex-
ecution time for dynamic voltage frequency scaling (DVFS)
scaling on AMD processors [30]. For each load instruc-
tion, the appropriate latency is added to the total execution
time based which memory the load went to. This estimate
represents a worst-case execution time assuming that the addi-
tional latency cannot be hidden by concurrent computation or
pre-fetching. The DRAM page hit ratio* (from performance
counters) is taken into account during this calculation, as page
hits typically have a lower latency than page misses. We as-
sume the same row buffer hit ratio for both types of memories,
although differences in channel counts and other memory pa-
rameters could cause this to vary in practice. Writes are not
considered to impact execution time, assuming that there is
sufficient write-buffering in the processor chip, writes can be
drained to memory during periods where the memory bus is
idle. A fixed Sus time penalty is charged for each page fault
[27] to cover the basic interrupt costs, and then another 3us
penalty is applied whenever a TLB shootdown [33] is required.
Page migration time is also added to the execution time, as
the migrations do not overlap with computation because this
is performed by the OS page fault handler. The time for mi-
gration is assumed to be bounded by the off-package memory
bandwidth.

Once total (worst-case) execution time is derived, we esti-
mate active and background power consumption for the mem-
ory system (not the APU compute units). The current and
voltage parameters for 3D-stacked DRAM are based on mea-
surements from a high-bandwidth memory (HBM) device.
DDR4 power is estimated based on the Micron DDR3 DRAM
power calculator [21], using DDR4 parameters from [22].

4Except for Windows applications, the data were not available and we used a hit
ratio of 30%, which was the average for Rodinia and PARSEC.

132

L1M HitRate

®HW Cache
~ mos Page Cache
B Oracle

L1M Hit Rate %

@ History
BFT
FTHP

Applications

Figure 3: Hit rates in die-stacked, level-one memory.

L1M Traffic
100
80 i
3 60 W HW Cache
40
2 @ OS Page Cache
0 B Oracle
¢ & & ¥ e & Q9 & & @ o 2 OHistory
& $ S L L R & X 2
~<\§ T EF & 0 \&o"& N QFT
© > & > &
Vo FTHP
L
&
Applications

Figure 4: Total traffic at the die-stacked, level-one memory.
4.2. Benchmarks

We evaluated a total of 23 different workloads from PAR-
SEC [1], Rodinia [5] and some Windows desktop applica-
tions. We only focused on the applications that exhibited high
levels of memory traffic. PARSEC is a suite of multi-threaded
CPU workloads composed of diverse applications from emerg-
ing areas ranging from computer vision to financial analytics.
We ran the simlarge input dataset for PARSEC. Rodinia is
a suite of benchmarks that are designed to test accelerators
such as GPUs. We evaluated a subset of six Rodinia bench-
marks that represented areas such as data mining, machine
learning, to graph traversal. Rodinia was run with its standard
default input dataset. In addition to benchmarks we also eval-
uated real-world Windows applications for video transcode
and Windows SDK. Together these workloads provide a mix
of operating systems, devices (CPU, GPU), and a wide array
of application domains that provide a rich suite to test our
management policies.

5. Experimental Results

We plot and discuss results of the top 10 of a total of 25 appli-
cations that generated the most traffic. Most of the remaining
applications generate significantly lower memory traffic and
as such the memory policy does not have a significant impact
on speedup. The results in this section are presented for a
baseline LIM:L2M ratio of 1:8. Additionally, for the FTHP
policy we show results for epoch of 0.1s and threshold of 32,
which were the best static value on average for performance.
We discuss sensitivity sweeps for FTHP policy, for LIM:L2M
ratio, epoch length and threshold in Section 6.

5.1. Analysis of Hit Rates and traffic

We first analyze the three performance metrics shown in Fig-
ure 3, Figure 4 and Figure 5. Each of these figures plots for
each application on the X-axis the performance metric on the
Y-axis. Also shown in each of these plots is the arithmetic
mean across all applications for a given management policy.
The hit rates in the L1M is the highest for both the caching
policies, with the OS Page Cache being on average the best
performer. Among the HMA policies, oracle policy comes
quite close to the hit rate of the caching policies. The oracle
policy shows that there is some epoch level locality that can be
leveraged, however, oracle is unattainable and as such gives
the upper bound on performance for the HMA policies. The
caching policies do come at the price of page migrations and
in particular the OS page cache policy also incurs page faults
and TLB shootdown overheads. The plots for traffic to each
memory level reflects the sum of all traffic going to a given
memory level. For the hardware cache, traffic is generated for
reads/writes as well to satisfy misses. Similarly page cache
has traffic for reads/writes but also incurs significant traffic
to migrate pages on page faults in LIM. On average, the traf-
fic generated by both the caching policies is between 3x to
5x as compared to the remaining HMA policies. This can
be attributed to the significant migration traffic for misses in
the caching policies. In contrast, the HMA policies gener-
ate migration traffic only at epoch boundaries. From these
three performance metrics it is clear that while the caching
policies have very high hit rates they come at a price of signif-
icant increase in migration traffic. Hence, discussed next in
Section 5.2 is our evaluation using performance and energy
models.

5.2. Performance and Energy results

The performance and energy model, discussed in Section 4.1,
takes the performance metrics from simulation as well as ad-
ditional information from performance counters and estimates
performance and energy. Show in Figure 6 and Figure 7 are
the speedup and energy consumption (memory only) for HMA
architecture with HBM as L1M and DDR4 for L2M memory.
Figure 6° shows for each application on the X-axis the speedup
over a memory composed of only DDR4 memory. Also shown
in this figure is the arithmetic mean speedup across all appli-
cations for a given policy. For comparison, the figure also
includes the speedup of an HBM-only memory over DDR4,
which serves as a ceiling for speedup. For these workloads an
HBM only memory has a speedup of about 20% on average
over all DDR4 memory. The oracle policy is the most effec-
tive with an average speed up of about 15% and comes very
close to the HBM speedup. The hardware cache did not show
any significant improvements and the worst performing is the
OS page cache policy with an average factor of 3x slowdown.

5The Y-axis is truncated at -100 so that trends for other points are visible and we
provide data label for points below -100.

133

The advantage of high L1M hit rate for this policy is over-
shadowed by the overheads due to page faults and associated
costs. Thus, for an HMA system the OS page cache policy
illustrates that hit rate is not the only optimization target and
other factors such as migrations and faults play a big role as
well. After oracle, the history and FTHP policy perform nearly
the same, with history being marginally better. The history
policy has its own set of challenges associated with devising a
scalable mechanism to track per-page access count and sorting
at epoch boundaries. The FTHP policy reduces some of these
complexities by just tracking pages that have crossed some 0
accesses. Thus, if number of pages that are accessed more than
0 are less than size of L1M then no sorting is required. Hence
by tuning 0 we can reign in the cost of sorting and find the
right balance with the desire to pre-load hot pages and reduce
overheads. The simple FT policy shows an average of 18%
slowdown which shows that some sort of hot page selection is
required to take advantage of the faster HBM memory.

Figure 7° shows for each application on the X-axis the
consumed energy for memory. The figure also shows the
arithmetic mean for a given policy across all applications.
In general the trends follow those observed for speedup in
Figure 6. The OS page cache consumes 4x more energy than
the HMA policies. Hardware cache is better than OS page
cache but it has significant energy expenditure and has 2x
more energy burn than HMA policies. All HMA policies have
lower energy usage than page cache and in particular FTHP
has similar usage as oracle and history policies. Hence by
using FTHP policies we can get performance comparable to
history, but with lower complexity. Next, we discuss some
approximations of detecting hot pages which may show the
path for an even more practical solution.

5.3. Discussion

While maintaining a hot page list using our 0 threshold reduces
complexity over history policy it still requires some sorting
overhead if we have more hot pages than the size of L1M.
Instead here we discuss a simpler variant of detecting hot
pages by just marking pages as hot if they are accessed more
than O times. The hot bit splits the pages into hot and cold sets.
If the hot set is larger than the L1M size we choose the hot
pages on a first-come first-serve basis (i.e., the pages that were
marked hot first are preloaded). The main difference between
this hotbit version of FTHP and the one presented in previous
sections is that some pages that are accessed later in the epoch
may get left out even if they have high access counts. The
adjustment to 6 can alleviate and balance those issues to some
extent. Choosing a static 6 value may not be practical as it
may be sub optimal for some applications and may require
prior profiling. That is why we have also devised a variant that
adjusts 0 dynamically.

To that extent, we have deployed a simple proportional

OThe Y-axis is truncated at 4.5e09 so that trends for other points are visible and we
provide data label for points above 4.5e09.

L2M Traffic
80
60
g 40 m HW Cache
20 . [OS Page Cache
o0 | B Oracle
9 QS o & > N Q X < 3 o @ History
S SIIRES SIS {) o & K o
F ¥ FEF P TG aFT
Ay RS P Y
V& FTHP
&
v§
Applications
Figure 5: Total traffic at the off-package, level-two memory.
Speedup versus DDR4
60 - -
40
20 —=— —_— — — —
Bi 0 A 1 mmHW Cache
5 0y e T i
B 20 t [[~ [mOS Page Cache
2 -40 Eoracle
w]
-60 .
80 history
100 -199 104 [|-168 || -316 || -229]|-181q] -143 318 ZAFT
9 QS S X 2 2N Q & 2 Q FTHP
LR R S AP SO
& & & @ @ & All HBM
@ &
&
- &
Applications v

Figure 6: Speedup over DDR4 memory.

linear feedback controller that aims to bring the hot set close
to the size of the first level memory in pages. That way, the
need for sorting is eliminated, and the hotbit approximation
acts as the history policy. At the end of each epoch, the
controller monitors the hot set identified with the presently
chosen threshold 6. The relative difference between this set
and the size of the fast memory region is then calculated.
The resulting number is the rate by which the threshold 6 is
adjusted for the next epoch (to the smaller value if the hot set
fits within level one memory with some space left for FT, and
to the bigger value, if the hot set is too big for LIM). Such
reactive proof-of-concept implementation, though useful, can
be replaced with a more sophisticated threshold adjustment
method, e.g. interpolation based on prior 0 values.

We compare FTHP, FTHP-hotbit and FTHP with dynamic
6 adjustment in Figure 8. FTHP with hot bit gets within 2/3 of
the speedup of FTHP. The dynamic feedback algorithm allows
to further improve the results and approach FTHP most of the
time. By its nature, the feedback however can be detrimental to
performance at times, in case the application is highly dynamic
(the feedback control is unable to keep up with the hot set) or
if there is a significant hot set overreaction to the parameter
adjustment.

6. Sensitivity Analysis

In Section 5, we had focused mostly on the best static pa-
rameter values for some of the knobs that we have to set for
running FTHP. In this section we analyze the sensitivity of
those knobs for speedup. We present a one-factor analysis by
sweeping one knob at time, and fixing the remaining knobs

134

Total Memory Energy

5.2e9)

, 4.00E+09
S 3.00E+09
2 2.00£408
§ 1.00£409

0.00E+00

®HW Cache
@ OS Page Cache
Boracle

@ history
FT
FTHP

Applications

Figure 7. Energy consumed for memory.

FTHP variants

Speedup %

W FTHP
M FTHP-HB
® FTHP-FB

F S S S S
&L & & @ X @ & N
© > R \,?'\) ,§\0
&
&
Applications v

Figure 8: Speedup for FTHP, FTHP hotbit, and FTHP with dynamic threshold
adjustment.

to their best static value. First, presented in Figure 9 is the
sensitivity of performance to the chosen epoch interval. In this
figure for each application shown on the X-Axis we plot the
speedup over DDR4 for four different epochs. The epoch de-
termines the ability to capture application phases. The smaller
the epoch, the more fine grained the phases we can detect, but
this comes at the cost of overhead of handling epoch related
management activity. The lowest epoch of 0.001 seconds is set
based on the value of the Linux scheduling timer. This timer is
used by the operating systems process scheduling algorithms
among other things. Reducing granularity below this value
will cause overheads in the system software which we would
like to avoid. Conversely our largest epoch is topped off at 1
second since some of our applications run only for a second
or so. The epoch sweep shows that very fine granularities
cause more overheads to handle epoch related activities. On
an average the lowest 0.001 epoch results in 5x slowdown,
and going to 0.01 improves it but it still has 100% slowdown.
Epoch lengths of 0.1 and 1 second yield similar speedups, with
0.1 epoch being the best. These results show that epoch is an
important parameter for a system that manages Heterogeneous
Memory Architecture in software. It should not be too fine
grained, as the systems software overhead will outweigh any
potential benefits from a more robust memory scheduling.
Next we sweep different values of FTHP thresholds to study
its effect. Figure 10 shows for each application on the X-axis
its corresponding speedup at three different thresholds, 4, 32,
4096. The threshold 0 sets the criteria for classifying a page
as hot. Setting this value too low can result in too many hot

Epoch Sweep

X
s] 1
] -
E,)_ - mmo.1
. 1388 240 01
-330 1442 [30.001
s All HBM
& Q«°Q
os
Applications

L1M Size Sweep

n1/32
- m1/16
1 =18
. m1/4
21/2
ALL HBM

Applications

Figure 9: Figure shows speedup over DDR4 for FTHP with different epochs.

Threshold Sweep
60
40

N
R0 | —————— N ~ e
3
g 0 .T,E -'HE .WE .".E IWE .TIEI 7 IT!E .T’E -
&2 mm32
'Zg 34096
- T N & @ o TAIHEM
R NRC N S R R X @& & &
O & & @ Q & S
Ry IS S 2 RS
N (2
<&
&
_— o
Applications

Figure 10: Figure shows speedup over DDR4 for FTHP with different hot page
thresholds.

pages and as a result we may not choose the correct set of
hot pages to preload at epoch boundaries. On the other hand
choosing a threshold too high will preclude a lot of hot pages.
The threshold sweep shows that on average threshold of 4
gives the best performance and threshold of 32 gives nearly
the same performance. When going to a higher threshold we
start observing a slowdown as demonstrated by a threshold of
4096. It is important to note that these results hold for a certain
L1M size and a particular workload, and are provided here
for illustrative purposes only. For a different stacked memory
and different applications, other values for the threshold are
likely more appropriate. This highlights the importance of the
dynamic parameter adjustment for the software-orchestrated
memory management.

Lastly we sweep different values of L1M sizes. We expect
that as L1M size increases we should expect better perfor-
mance. For this sweep we dynamically also adjust the thresh-
old so as to take advantage of larger L1M memory. Figure 11
shows the speedup for each application for 6 different L1M
sizes which are 1/32, 1/16, 1/8, 1/4, 1/2 and all HBM. As
anticipated as we increase the size of the L1 memory we see
improvements in performance. The improvements in perfor-
mance is almost linear on average when going from 1/4 to
all HBM; however for the lower ranges it does not increase
linearly, for example a speedup of 1/4 is 7.5% and 1/8 is 6.3%.
We conjecture that to take advantage of bigger memory we not
only have to set the correct threshold but we may also have to
tweak epoch lengths.

We have presented one-factor sensitivity analysis that shows

135

Figure 11: Figure shows speedup over DDR4 for FTHP with different L1M
sizes.

that three important parameters for FTHP have impact on
speedup. A larger study, which is out of the scope of this paper,
is to perform a k-factor analysis to find the optimal settings
of these factors and potentially adapt them dynamically per
application. We leave k-factor analysis and sensitivity studies
for energy as part of future explorations.

7. Conclusions and Future work

Due to several pressing constraints, the memory subsystem of
the future will likely contain a heterogeneous mix of memory
technologies, such as emergent die-stacked DRAM alongside
with more conventional DDR4. This heterogeneous mem-
ory architecture prompts the design of management policies
that place workload data across levels of memory judiciously.
Previous solutions have focused on hardware caching tech-
niques to make use of the stacked memory. These approaches,
however, require complex changes to the processor and also
cannot leverage the stacked memory to increase the system’s
overall memory capacity. In this work, we have considered
exposing the stacked DRAM as part of the system’s physical
address space to simplify the hardware implementation and
increase the physical memory capacity of the system. We
have shown that the overhead incurred by the software layers
in this case must be carefully weighed in order to prevent
severe performance degradation due to low die stacking hit
rates, excessive data migration and page fault servicing delay.
Furthermore, we have presented an efficient hybrid memory
management system in software that dynamically adapts itself
to different applications with minimal hardware support. We
also described how such a policy can be shaped by gradually
easing the assumptions of several more informed (and less
practical) methods.

In the future we would like to explore non-volatile random
access memory (NVRAM) as part of main memory and extend
our analysis to more than two memory levels. We would
like to further investigate methods to detect hot pages and
continue our explorations with dynamic switching between
different management policies (subject to active workload
requirements) and API support for preferential binding of the
frequently accessed memory objects to the faster memory
regions in the heterogeneous memory subsystem.

Acknowledgment

We would like to sincerely thank P. Conway and J. Jillella for
their help with the tracing tools and for providing us with some
of the memory traces used for HMA simulation. AMD, the
AMD Arrow logo, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may
be trademarks of their respective companies.

References

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

B. Black, “Die Stacking is Happening,” in Proc. of the Intl. Symp. on
Microarchitecture, Davis, CA, December 2013.

S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Concurrent Page
Migration for Mobile Systems with OS-Managed Hybrid Memory,” in
Proc. of the Computing Frontiers, May 2014.

W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but effective tech-
niques for numa memory management,” SIGOPS Oper. Syst. Rev.,
vol. 23, no. 5, pp. 19-31, Nov. 1989.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. ISWC °09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 44-54. [Online].
Available: http://dx.doi.org/10.1109/IISWC.2009.5306797

A.J. Chiachen Chou and M. Qureshi, “CAMEO:A Two-Level Mem-
ory Organization with Capacity of Main Memory and Flexibility of
Hardware-Managed Cache,” in Proc. of the 47th Intl. Symp. on Mi-
croarchitecture, Cambridge, UK, December 2014.

Y. Deng and W. Maly, “Interconnect Characteristics of 2.5-D System
Integration Scheme,” in Proc. of the Intl. Symp. on Physical Design,
Sonoma County, CA, April 2001, pp. 171-175.

M. El-Nacouzi, I. Atta, M. Papadopoulou, J. Zebchuk, N. E. Jerger, and
A. Moshovos, “A Dual Grain Hit-miss Detector for Large Die-stacked
DRAM Caches,” in Proc. of the Conf. on Design, Automation and Test
in Europe, 2013, pp. 89-92.

B. V. Essen, H. Hsieh, S. Ames, and M. Gokhale, “DI-MMAP: A High
Performance Memory-Map Runtime for Data-Intensive Applications,”
in Proc. of the ACM/IEEE Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis, Salt Lake City, UT, November 2012,
pp. 731-735.

F. Hameed, L. Bauer, and J. Henkel, “Simultaneously Optimizing
DRAM Cache Hit Latency and Miss Rate via Novel Set Mapping
Policies,” in Proc. of the, 2013.

POWERS Processor User’s Manual for the Single-Chip Module, IBM.

Intel, “KnightsLanding,” http://www.realworldtech.com/knights-
landing-details/.
JEDEC, “Wide I/O Single Data Rate (Wide I/O SDR),)”

http://www.jedec.org/standards-documents/docs/jesd229.

D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers,” in Proc. of the Intl. Symp. on Computer Architecture, 2013.
X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian, “CHOP: Adaptive
Filter-Based DRAM Caching for CMP Server Platforms,” in Proc. of
the 16th Intl. Symp. on High Performance Computer Architecture,
January 2010, pp. 1-12.

Joint Electron Devices Engineering Council, “JEDEC: 3D-ICs,”
http://www.jedec.org/category/technology-focus-area/3d-ics-0.

M. Lee, V. Gupta, and K. Schwann, “Software-Controlled Transparent
Management of Heterogeneous Memory Resources in Virtualized Sys-
tems,” in Proc. of the the Workshop on Memory Systems, Performance,
and Correctness, 2014.

G. H. Loh and M. D. Hill, “Supporting Very Large Caches with Con-
ventional Block Sizes,” in Proc. of the 44th Intl. Symp. on Microarchi-
tecture, Porto Alegre, Brazil, December 2011.

G. H. Loh, N. Jayasena, K. McGrath, M. O’Connor, S. Reinhardt,
and J. Chung, “Challenges in Heterogeneous Die-Stacked and Off-
Chip Memory Systems,” in 3rd Workshop on SoCs, Heterogeneous
Architectures and Workloads (SHAW), New Orleans, LA, February
2012.

136

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “En-
abling Efficient and Scalable Hybrid Memories Using Fine-Granularity
DRAM Cache Management,” Computer Architecture Letters, vol. 11,
no. 2, pp. 61-64, July 2012.

Micron Technology Inc., “Micron DDR3 Power Calculator,”
http://www.micron.com/products/support/power-calc.

J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F.
Martinez, “Understanding and mitigating refresh overheads in
high-density ddr4 dram systems,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ser. ISCA *13.
New York, NY, USA: ACM, 2013, pp. 48-59. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485927

NVIDIA, “NVIDIA Pascal,”
http://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-
memory-feeding-appetite-big-data/.

J. T. Pawlowski, “Hybrid Memory Cube: Breakthrough DRAM Perfor-
mance with a Fundamentally Re-Architected DRAM Subsystem,” in
Proc. of the 23rd Hot Chips, Stanford, CA, August 2011.

M. Qureshi and G. H. Loh, “Fundamental Latency Trade-offs in Ar-
chitecturing DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design,” in Proc. of the 45th Intl. Symp. on
Microarchitecture, Vancouver, Canada, December 2012.

B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. de Supinski,
“Practical performance prediction under dynamic voltage frequency
scaling,” in Green Computing Conference and Workshops (IGCC),
2011 International. 1EEE, 2011, pp. 1-8.

M. Saxena and M. M. Swift, “Flashvm: Revisiting the virtual
memory hierarchy,” in Proceedings of the 12th Conference on
Hot Topics in Operating Systems, ser. HotOS’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 13—13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855568.1855581

J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A
Mostly-Clean DRAM Cache for Effective Hit Speculation and Self-
Balancing Dispatch,” in Proc. of the 45th Intl. Symp. on Microarchitec-
ture, Vancouver, Canada, December 2012.

T. Straumann, “Open Source Real Time Operating System Overview,”
in Proc. of the Int’l. Conference on Accelerator and Large Experimental
Physics Control Systems, San Jose, CA, 2001.

B. Su, J. L. Greathouse, J. Gu, M. Boyer, L. Shen, and Z. Wang, “Im-
plementing a leading loads performance predictor on commodity pro-
cessors,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. USENIX Asso-
ciation, 2014, pp. 205-210.

B. Van Essen, H. Hsieh, S. Ames, R. Pearce, and M. Gokhale, “Di-
mmap—a scalable memory-map runtime for out-of-core data-intensive
applications,” Cluster Computing, pp. 1-14, 2013.

B. Van Essen, R. Pearce, S. Ames, and M. Gokhale, “On the role of
nvram in data-intensive architectures: an evaluation,” in Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Interna-
tional. 1EEE, 2012, pp. 703-714.

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal, “Didi:
Mitigating the performance impact of tlb shootdowns using a shared
tlb directory,” in Proceedings of the 2011 International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT *11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 340-349.
[Online]. Available: http://dx.doi.org/10.1109/PACT.2011.65

W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications
of the Obvious,” Computer Architecture News, vol. 23, no. 1, pp. 20-24,
March 1995.

W. Zhang and T. Li, “Exploring Phase Change Memory and 3D Die-
Stacking for Power/Thermal Friendly, Fast and Durable Memory Ar-
chitectures,” in Proc. of the Intl. Conf. on Parallel Architectures and
Compilation Techniques, Raleigh, NC, September 2009, pp. 101-112.
L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring DRAM
cache architectures for CMP server platforms,” in Proc. of the 25th
Intl. Conf. on Computer Design, October 2007, pp. 55-62.

Y. Zhou, J. F. Philbin, and K. Li, “The multi-queue replacement algo-
rithm for second level buffer caches,” in In Proceedings of the 2001
USENIX Annual Technical Conference, 2001, pp. 91-104.

